

Reference number
ISO/IEC TR 19767:2005(E)

© ISO/IEC 2005

TECHNICAL
REPORT

ISO/IEC
TR

19767

First edition
2005-02-15

Information technology — Programming
languages — Fortran — Enhanced
Module Facilities

Technologies de l'information — Langages de programmation —
Fortran — Facilités améliorées de module

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2005
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2005 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

© ISO/IEC 2005 – All rights reserved iii

Contents Page

 Foreword . iv

0.1 Shortcomings of Fortran’s module system . v
0.2 Disadvantage of using this facility . vi

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 Summary . 2
2.2 Submodules . 2
2.3 Separate module procedure and its corresponding interface body 2
2.4 Examples of modules with submodules . 3

3 Required editorial changes to ISO/IEC 1539-1:2004 . 4

0 Introduction . v

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

iv © ISO/IEC 2005 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal
with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report of one of
the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard, despite
repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the future but not
immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is normally
published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether they can be
transformed into International Standards. Technical Reports of type 3 do not necessarily have to be reviewed until the
data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO
and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 19767:2004, which is a Technical Report of type 2, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system
software interfaces.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

© ISO/IEC 2005 – All rights reserved v

0 Introduction

This technical report specifies an extension to the module program unit facilities of the programming language
Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2004.

The module system of Fortran, as standardized by ISO/IEC 1539-1:2004, while adequate for programs of modest
size, has shortcomings that become evident when used for large programs, or programs having large modules.
The primary cause of these shortcomings is that modules are monolithic.

This technical report extends the module facility of Fortran so that program developers can optionally encapsulate
the implementation details of module procedures in submodules that are separate from but dependent on the
module in which the interfaces of their procedures are defined. If a module or submodule has submodules, it is
the parent of those submodules.

The facility specified by this technical report is compatible to the module facility of Fortran as standardized by
ISO/IEC 1539-1:2004.

It is the intention of ISO/IEC JTC1/SC22 that the semantics and syntax specified by this technical report be
included in the next revision of the Fortran International Standard without change unless experience in the im-
plementation and use of this feature identifies errors that need to be corrected, or changes are needed to achieve
proper integration, in which case every reasonable effort will be made to minimize the impact of such changes on
existing implementations.

0.1 Shortcomings of Fortran’s module system

The shortcomings of the module system of Fortran, as specified by ISO/IEC 1539-1:2004, and solutions offered
by this technical report, are as follows.

0.1.1 Decomposing large and interconnected facilities

If an intellectual concept is large and internally interconnected, it requires a large module to implement it. Decom-
posing such a concept into components of tractable size using modules as specified by ISO/IEC 1539-1:2004 may
require one to convert private data to public data. The drawback of this is not primarily that an “unauthorized”
procedure or module might access or change these entities, or develop a dependence on their internal details.
Rather, during maintenance, one must then answer the question “where is this entity used?”

Using facilities specified in this technical report, such a concept can be decomposed into modules and submodules
of tractable size, without exposing private entities to uncontrolled use.

Decomposing a complicated intellectual concept may furthermore require circularly dependent modules, but this
is prohibited by ISO/IEC 1539-1:2004. It is frequently the case, however, that the implementations of some
parts of the concept depend upon the interfaces of other parts. Because the module facility defined by ISO/IEC
1539-1:2004 does not distinguish between the implementation and interface, this distinction cannot be exploited
to break the circular dependence. Therefore, modules that implement large intellectual concepts tend to become
large, and thus expensive to maintain reliably.

Using facilities specified in this technical report, complicated concepts can be implemented in submodules that
access modules, rather than modules that access modules, thus reducing the possibility for circular dependence
between modules.

0.1.2 Avoiding recompilation cascades

Once the design of a program is stable, few changes to a module occur in its interface, that is, in its public data,
public types, the interfaces of its public procedures, and private entities that affect their definitions. We refer to
the rest of a module, that is, private entities that do not affect the definitions of public entities, and the bodies of

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

vi © ISO/IEC 2005 – All rights reserved

its public procedures, as its implementation. Changes in the implementation have no effect on the translation of
other program units that access the module. The existing module facility, however, draws no structural distinction
between the interface and the implementation. Therefore, if one changes any part of a module, most language
translation systems have no alternative but to conclude that a change might have occurred that could affect the
translation of other modules that access the changed module. This effect cascades into modules that access
modules that access the changed module, and so on. This can cause a substantial expense to retranslate and
recertify a large program. Recertification can be several orders of magnitude more costly than retranslation.

Using facilities specified in this technical report, implementation details of a module can be encapsulated in
submodules. Submodules are not accessible by use association, and they depend on their parent module, not vice-
versa. Therefore, submodules can be changed without implying that a program unit accessing the parent module
(directly or indirectly) must be retranslated.

It may also be appropriate to replace a set of modules by a set of submodules each of which has access to others
of the set through the parent/child relationship instead of USE association. A change in one such submodule
requires the retranslation only of its descendant submodules. Thus, compilation and certification cascades caused
by changes can be shortened.

0.1.3 Packaging proprietary software

If a module as specified by International Standard ISO/IEC 1539-1:2004 is used to package proprietary software,
the source text of the module cannot be published as authoritative documentation of the interface of the module,
without either exposing trade secrets, or requiring the expense of separating the implementation from the interface
every time a revision is published.

Using facilities specified in this technical report, one can easily publish the source text of the module as authorita-
tive documentation of its interface, while witholding publication of the source text of the submodules that contain
the implementation details, and the trade secrets embodied within them.

0.1.4 Easier library creation

Most Fortran translator systems produce a single file of computer instructions and data, frequently called an object
file, for each module. This is easier than producing an object file for the specification part and one for each module
procedure. It is also convenient, and conserves space and time, when a program uses all or most of the procedures
in each module. It is inconvenient, and results in a larger program, when only a few of the procedures in a general
purpose module are needed in a particular program.

Modules can be decomposed using facilities specified in this technical report so that it is easier for each program
unit’s author to control how module procedures are allocated among object files. One can then collect sets of
object files that correspond to a module and its submodules into a library.

0.2 Disadvantage of using this facility

Translator systems will find it more difficult to carry out global inter-procedural optimizations if the program
uses the facility specified in this technical report. Interprocedural optimizations involving procedures in the same
module or submodule will not be affected. When translator systems become able to do global inter-procedural
optimization in the presence of this facility, it is possible that requesting inter-procedural optimization will cause
compilation cascades in the first situation mentioned in subclause 0.1.2, even if this facility is used. Although one
advantage of this facility could perhaps be reduced in the case when users request inter-procedural optimization, it
would remain if users do not request inter-procedural optimization, and the other advantages remain in any case.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

TECHNICAL REPORT ISO/IEC TR 19767:2005(E)

© ISO/IEC 2005 – All rights reserved 1

Information technology — Programming languages — Fortran —
Enhanced Module Facilities

1 General

1.1 Scope

This technical report specifies an extension to the module facilities of the programming language Fortran. The
Fortran language is specified by International Standard ISO/IEC 1539-1:2004 : Fortran. The extension allows
program authors to develop the implementation details of concepts in new program units, called submodules, that
cannot be accessed directly by use association. In order to support submodules, the module facility of International
Standard ISO/IEC 1539-1:2004 is changed by this technical report in such a way as to be upwardly compatible
with the module facility specified by International Standard ISO/IEC 1539-1:2004.

Clause 2 of this technical report contains a general and informal but precise description of the extended function-
alities. Clause 3 contains detailed instructions for editorial changes to ISO/IEC 1539-1:2004.

1.2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

ISO/IEC 1539-1:2004 : Information technology – Programming languages – Fortran – Part 1: Base language

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

2 Requirements

The following subclauses contain a general description of the extensions to the syntax and semantics of the
Fortran programming language to provide facilities for submodules, and to separate subprograms into interface
and implementation parts.

2.1 Summary

This technical report defines a new entity and modifications of two existing entities.

The new entity is a program unit, the submodule. As its name implies, a submodule is logically part of a module,
and it depends on that module. A new variety of interface body, a module procedure interface body, and a new
variety of procedure, a separate module procedure, are introduced.

By putting a module procedure interface body in a module and its corresponding separate module procedure in
a submodule, program units that access the interface body by use association do not depend on the procedure’s
body. Rather, the procedure’s body depends on its interface body.

2.2 Submodules

A submodule is a program unit that is dependent on and subsidiary to a module or another submodule. A module
or submodule may have several subsidiary submodules. If it has subsidiary submodules, it is the parent of those
subsidiary submodules, and each of those submodules is a child of its parent. A submodule accesses its parent by
host association.

An ancestor of a submodule is its parent, or an ancestor of its parent. A descendant of a module or submodule
is one of its children, or a descendant of one of its children.

A submodule is introduced by a statement of the form SUBMODULE (parent-identifier) submodule-name, and
terminated by a statement of the form END SUBMODULE submodule-name. The parent-identifier is either the
name of the parent module or is of the form ancestor-module-name : parent-submodule-name, where parent-
submodule-name is the name of a submodule that is a descendant of the module named ancestor-module-name.

Identifiers declared in a submodule are effectively PRIVATE, except for the names of separate module procedures
that correspond to public module procedure interface bodies (2.3) in the ancestor module. It is not possible to
access entities declared in the specification part of a submodule by use association because a USE statement is re-
quired to specify a module, not a submodule. ISO/IEC 1539-1:2004 permits PRIVATE and PUBLIC declarations
only in a module, and this technical report does not propose to change this.

Submodule identifiers are global identifiers, but since they consist of a module name and a descendant submodule
name, the name of a submodule can be the same as the name of another submodule so long as they do not have
the same ancestor module.

In all other respects, a submodule is identical to a module.

2.3 Separate module procedure and its corresponding interface body

A module procedure interface body specifies the interface for a separate module procedure. It is different from
an interface body defined by ISO/IEC 1539-1:2004 in three respects. First, it is introduced by a function-stmt or
subroutine-stmt that includes MODULE in its prefix. Second, it specifies that its corresponding procedure body
is in the module or submodule in which it appears, or in one of its descendant submodules. Third, it accesses the
module or submodule in which it is declared by host association.

A separate module procedure is a module procedure whose interface is declared in the same module or sub-
module, or is declared in one of its ancestors and is accessible from that ancestor by host association. The module

2 c© ISO/IEC 2005 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

subprogram that defines it may redeclare its characteristics, whether it is recursive, and its binding label. If any of
these are redeclared, the characteristics, corresponding dummy argument names, whether it is recursive, and its
binding label if any, shall be the same as in its module procedure interface body. The procedure is accessible by
use association if and only if its interface body is accessible by use association. It is accessible by host association
if and only if its interface body is accessible by host association.

If the procedure is a function and its characteristics are not redeclared, the result variable name is determined
by the FUNCTION statement in the module procedure interface body. Otherwise, the result variable name is
determined by the FUNCTION statement in the module subprogram.

2.4 Examples of modules with submodules

The example module POINTS below declares a type POINT and a module procedure interface body for a module
function POINT DIST. Because the interface body includes the MODULE prefix, it accesses the scoping unit
of the module by host association, without needing an IMPORT statement; indeed, an IMPORT statement is
prohibited.

MODULE POINTS
TYPE :: POINT

REAL :: X, Y
END TYPE POINT

INTERFACE
REAL MODULE FUNCTION POINT_DIST (A, B) RESULT (DISTANCE)

TYPE(POINT), INTENT(IN) :: A, B ! POINT is accessed by host association
REAL :: DISTANCE

END FUNCTION POINT_DIST
END INTERFACE

END MODULE POINTS

The example submodule POINTS A below is a submodule of the POINTS module. The type POINT and the
interface POINT DIST are accessible in the submodule by host association. The characteristics of the function
POINT DIST are redeclared in the module function body, and the dummy arguments have the same names. The
function POINT DIST is accessible by use association because its module procedure interface body is in the
ancestor module and has the PUBLIC attribute.

SUBMODULE (POINTS) POINTS_A
CONTAINS

REAL MODULE FUNCTION POINT_DIST (A, B) RESULT (DISTANCE)
TYPE(POINT), INTENT(IN) :: A, B
DISTANCE = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)

END FUNCTION POINT_DIST
END SUBMODULE POINTS_A

An alternative declaration of the example submodule POINTS A shows that it is not necessary to redeclare the
properties of the module procedure POINT DIST.

SUBMODULE (POINTS) POINTS_A
CONTAINS

MODULE PROCEDURE POINT_DIST
DISTANCE = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)

END PROCEDURE POINT_DIST
END SUBMODULE POINTS_A

c© ISO/IEC 2005 – All rights reserved 3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

3 Required editorial changes to ISO/IEC 1539-1:2004

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of
this report. Descriptions of how and where to place the new material are enclosed between square brackets.

[After the third right-hand-side of syntax rule R202 insert:]

or submodule

[After syntax rule R1104 add the following syntax rule. This is a quotation of the “real” syntax rule in subclause
11.2.2.]

R1115a submodule is submodule-stmt
[specification-part]
[module-subprogram-part]
end-submodule-stmt

[Add another alternative to R1108:]
or separate-module-subprogram

[In the second line of the first paragraph of subclause 2.2 insert “, a submodule” after “module”.]

[In the fourth line of the first paragraph of subclause 2.2 insert a new sentence:]

A submodule is an extension of a module; it may contain the definitions of procedures declared in a module or
another submodule.

[In the sixth line of the first paragraph of subclause 2.2 insert “, a submodule” after “module”.]

[In the penultimate line of the first paragraph of subclause 2.2 insert “or submodule” after “module”.]

[In the second sentence of 2.2.3.2, insert “or submodule” between “module” and “containing”.]

[Insert a new subclause:]

2.2.5 Submodule

A submodule is a program unit that extends a module or another submodule. It may provide definitions (12.5)
for procedures whose interfaces are declared (12.3.2.1) in an ancestor module or submodule. It may also contain
declarations and definitions of other entities, which are accessible in descendant submodules. An entity declared
in a submodule is not accessible by use association unless it is a module procedure whose interface is declared in
the ancestor module. Submodules are further described in Section 11.

NOTE 2.2 1
2

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by host
association.

[In the second line of the first row of Table 2.1 insert “, SUBMODULE” after “MODULE”.]

[Change the heading of the third column of Table 2.2 from “Module” to “Module or Submodule”.]

[In the second footnote to Table 2.2 insert “or submodule” after “module” and change “the module” to “it”.]

[In the first line of 2.3.3, insert “, end-sep-subprogram-stmt” after “end-subroutine-stmt”, and insert “, end-

4 c© ISO/IEC 2005 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

ISO/IEC TR 19767:2005(E)

submodule-stmt,” after “end-module-stmt”. In the third line of subclause 2.3.3, replace “and end-subroutine-
stmt” by “end-subroutine-stmt, and end-sep-subprogram-stmt”. In the fifth line of subclause 2.3.3, replace “or
end-subroutine-stmt” by “, end-subroutine-stmt, or end-sep-subprogram-stmt”.]

[In the last line of 2.3.3 insert “, end-submodule-stmt,” after “end-module-stmt”.]

[In the first line of the second paragraph of 2.4.3.1.1 insert “, submodule” after “module”.]

[At the end of 3.3.1, immediately before 3.3.1.1, add “END PROCEDURE” and “END SUBMODULE” into the
list of adjacent keywords where blanks are optional, in alphabetical order.]

[In the second line of the third paragraph of 4.5.1.1 after “definition” insert “, and within its descendant submod-
ules”.]

[In the last line of Note 4.18, after “defined” add “, and within its descendant submodules”.]

[In the last line of the fourth paragraph of 4.5.3.6, after “definition”, add “, and within its descendant submod-
ules”.]

[In the last line of Note 4.40, after “module” add “, and within its descendant submodules”.]

[In the last line of Note 4.41, after “definition” add “, and within its descendant submodules”.]

[In the last line of the paragraph before Note 4.44, after “definition” insert “, and within its descendant submod-
ules”.]

[In the third line of the second paragraph of 4.5.5.2 insert “, or submodule” after “module”.]

[In the fourth line of the second paragraph of 4.5.5.2 insert “, or accessing the submodule” after “module”.]

[In the second paragraph of Note 4.48, insert “or submodule” after the first “module” and insert “or accessing the
submodule” after the second “module”].

[In the first line of the second paragraph of 5.1.2.12 after “attribute” insert “, or within any of its descendant
submodules”.]

[In the first and third lines of the second paragraph of 5.1.2.13 insert “or submodule” after “module” twice.]

[In the third line of the penultimate paragraph of 6.3.1.1 replace “or a subobject thereof” by “or submodule, or a
subobject thereof,”.]

[In the first two lines of the first paragraph after Note 6.23 insert “or submodule” after “module” twice.]

[In the second line of the first paragraph of Section 11 insert “, a submodule” after “module”.]

[In the first line of the second paragraph of Section 11 insert “, submodules” after “modules”.]

[Add another alternative to R1108]
or separate-module-subprogram

[Within the first paragraph of 11.2.1, at its end, insert the following sentence:]

A submodule shall not reference its ancestor module by use association, either directly or indirectly.

c© ISO/IEC 2005 – All rights reserved 5

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 19767:2005
https://standards.iteh.ai/catalog/standards/sist/2163a15c-873e-4782-adf9-

13b78329ba1f/iso-iec-tr-19767-2005

)†¥üOÄm¾Ô�ïP¯÷¼Î#q�íTÌ�Ð¾ËýpŽ�m˚ë�£�iÁ×�ïÇæ8ˆG�›Ÿ?¢ËñF'ë�IóF½n�
•�£–~�ý‰(‹&(Bbn�DìõsÊ*I2@‡pŠ

