INTERNATIONAL STANDARD

Third edition 2007-10-15

Iron ores for blast furnace feedstocks — Determination of the reducibility by the final degree of reduction index

Minerais de fer pour charges de hauts fourneaux — Détermination de la réductibilité relative par le degré final de l'indice de réduction

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 7215:2007 https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

Reference number ISO 7215:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 7215:2007 https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Page

Fore	eword	iv
Intro	oduction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	1
5	Sampling, sample preparation and preparation of test portions	2
6	Apparatus	
7	Test conditions	
8	Procedure	4
9	Expression of results	
10	Test report	
11	Verification iTeh STANDARD PREVIEW	6
Anne	ex A (normative) Flowsheet of the procedure for the acceptance of test results	9
	ex B (informative) Derivation of the equation for final degree of reduction ISO 7215:2007 https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bf- b9caf54364f1/iso-7215-2007	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 7215 was prepared by Technical Committee ISO/TC 102, *Iron ore and direct reduced iron*, Subcommittee SC 3, *Physical testing*.

This third edition cancels and replaces the second edition (ISO 7215:1995), which has been revised to homogenise with other physical test standards and ards iteh.ai)

ISO 7215:2007 https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

Introduction

This International Standard concerns one of a number of physical test methods that have been developed to measure various physical parameters and to evaluate the behaviour of iron ores, including reducibility, disintegration, crushing strength, apparent density, etc. This method was developed to provide a uniform procedure, validated by collaborative testing, to facilitate comparisons of tests made in different laboratories.

The results of this test should be considered in conjunction with other tests used to evaluate the quality of iron ores as feedstocks for blast furnace processes.

This International Standard may be used to provide test results as part of a production quality control system, as a basis of a contract, or as part of a research project.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 7215:2007 https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 7215:2007 https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

Iron ores for blast furnace feedstocks — Determination of the reducibility by the final degree of reduction index

CAUTION — This International Standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety issues associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use.

1 Scope

2

This International Standard specifies a method to provide a relative measure for evaluating the extent to which oxygen can be removed from iron ores when reduced under conditions resembling those prevailing in the reduction zone of a blast furnace.

This International Standard is applicable to lump ores, sinters and hot-bonded pellets.

iTeh STANDARD PREVIEW

Normative references (standards.iteh.ai)

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies tandards/sist/a99480e7-50e9-4bc1-90bf-

ISO 2597-1:2006, Iron ores — Determination of total iron content — Part 1: Titrimetric method after tin(II) chloride reduction

ISO 3082:2000¹⁾, Iron ores — Sampling and sample preparation procedures

ISO 9035:1989, Iron ores — Determination of acid-soluble iron(II) content — Titrimetric method

ISO 9507:1990, Iron ores — Determination of total iron content — Titanium(III) chloride reduction methods

ISO 11323:2002, Iron ore and direct reduced iron — Vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11323 apply.

4 Principle

The test portion is isothermally reduced in a fixed bed, at 900 °C, using a reducing gas consisting of CO and N_2 , for 180 min. The degree of reduction is calculated from the oxygen mass loss after 180 min.

¹⁾ Under revision to incorporate ISO 10836, Iron ores — Method of sampling and sample preparation for physical testing.

5 Sampling, sample preparation and preparation of test portions

5.1 Sampling and sample preparation

Sampling of a lot and preparation of a test sample shall be in accordance with ISO 3082.

The size range for pellets shall be -12,5 mm + 10,0 mm.

The size range for sinters and lump ores shall be -20,0 mm +18,0 mm.

A test sample of at least 2,5 kg, on a dry basis, of the sized material shall be obtained.

Oven-dry the test sample to constant mass at 105 $^\circ\text{C}$ \pm 5 $^\circ\text{C}$ and cool it to room temperature before preparation of the test portions.

NOTE Constant mass is achieved when the difference in mass between two subsequent measurements becomes less than 0,05 % of the initial mass of the test sample.

5.2 Preparation of test portions

Collect each test portion by taking ore particles at random.

NOTE Manual methods of division recommended in ISO 3082, such as riffling, can be applied to obtain the test portions.

At least 5 test portions, each of approximately 500 g mass (\pm the mass of 1 particle) shall be prepared from the test sample: 4 test portions for testing and 1 for chemical analysis.

Weigh the test portions to the nearest 1 g and register the mass of each test portion on its recipient label.

https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

6 Apparatus

6.1 General

The test apparatus shall comprise:

- a) ordinary laboratory equipment, such as an oven, hand tools, time-control device and safety equipment;
- b) a reduction-tube assembly;
- c) a furnace, equipped with a balance for permitting the mass loss of the test portion to be read at any time during the test;
- d) a system to supply the gases and regulate the flow rates;
- e) a weighing device.

Figure 1 shows an example of the test apparatus.

6.2 Reduction tube, made of non-scaling, heat-resistant metal to withstand temperatures higher than 900 °C and resistant to deformation. The internal diameter shall be 75 mm \pm 1 mm. A removable perforated plate, made of non-scaling, heat-resistant metal to withstand temperatures higher than 900 °C, shall be mounted in the reduction tube to support the test portion and to ensure uniform gas flow through it. The perforated plate shall be 4 mm thick, with its diameter 1 mm less than the tube internal diameter. The holes in the plate shall be 2 mm to 3 mm in diameter at a pitch center distance of 4 mm to 5 mm.

Figure 2 shows an example of a reduction tube.

6.3 Furnace, having a heating capacity and temperature control able to maintain the entire test portion, as well as the gas entering the bed, at 900 °C \pm 10 °C.

6.4 Balance, capable of weighing the reduction-tube assembly, including the test portion, to an accuracy of 0,5 g. The balance shall have an appropriate device to suspend or support the reduction-tube assembly.

6.5 Gas-supply system, capable of supplying the gases and regulating gas flow rates. It shall be ensured that a frictionless connection between the gas-supply system and the reduction tube does not affect the weight-loss determination during reduction.

6.6 Weighing device, capable of weighing the test portion to an accuracy of 1 g.

7 Test conditions

7.1 General

Volumes and flow rates of gases are as measured at a reference temperature of 0 °C and at a reference atmospheric pressure of 101,325 kPa (1,013 25 bar).

7.2 Reducing gas

7.2.1 Composition

The reducing gas shall consist of STANDARD PREVIEW

CO 30,0 % ± 1,0 % (volume fraction) ards.iteh.ai)

N₂ 70,0 % ± 1,0 % (volume fraction) <u>0 7215:2007</u>

https://standards.iteh.ai/catalog/standards/sist/a99480e7-50e9-4bc1-90bfb9caf54364f1/iso-7215-2007

7.2.2 Purity

Impurities in the reducing gas shall not exceed:

H₂ 0,2 % (volume fraction)

CO₂ 0,2 % (volume fraction)

O₂ 0,1 % (volume fraction)

H₂O 0,2 % (volume fraction)

7.2.3 Flow rate

The flow rate of the reducing gas, during the entire reducing period, shall be maintained at 15 L/min \pm 0,5 L/min.

7.3 Heating and cooling gas

Nitrogen (N₂) shall be used as the heating and cooling gas. Impurities shall not exceed 0,1 % (volume fraction).

The flow rate of N_2 shall be maintained at 5 L/min until the test portion reaches 900 °C, and at 15 L/min during the temperature-equilibration period.