INTERNATIONAL STANDARD

ISO 4698

Second edition 2007-10-15

Iron ore pellets for blast furnace feedstocks — Determination of the free-swelling index

Boulettes de minerais de fer pour l'alimentation de hauts fourneaux — Détermination de l'indice de gonflement libre

iTeh STANDARD PREVIEW (standards.iteh.ai)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4698:2007 https://standards.iteh.ai/catalog/standards/sist/662a3976-3eec-424a-88ce-bbaf40b878c1/iso-4698-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Foreword		Page	
		iv	
Intro	oduction	v	
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	1	
4	Principle	1	
5	Sampling, sample preparation and preparation of test portions	2	
6	Apparatus	2	
7	Test conditions	3	
8	Procedure		
9	Expression of results	4	
10	Test report	5	
11	Verification iTeh STANDARD PREVIEW	5	
Ann	nex A (normative) Flowsheet of the procedure for the acceptance of test results	8	
	tex B (normative) Methods for determination of the volume of the test portion		

https://standards.iteh.ai/catalog/standards/sist/662a3976-3eec-424a-88cebbaf40b878c1/iso-4698-2007

Contents

ISO 4698:2007(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 4698 was prepared by Technical Committee ISO/TC 102, *Iron ore and direct reduced iron*, Subcommittee SC 3, *Physical testing*.

This second edition cancels and replaces the first edition (ISO 4698:1994), which has been revised to homogenise with other physical test standards and ards.iteh.ai)

Introduction

This International Standard concerns one of a number of physical test methods that have been developed to measure various physical parameters and to evaluate the behaviour of iron ores, including reducibility, disintegration, crushing strength, apparent density, etc. This method was developed to provide a uniform procedure, validated by collaborative testing, to facilitate comparisons of tests made in different laboratories.

The results of this test should be considered in conjunction with other tests used to evaluate the quality of iron ores as feedstocks for blast furnace processes.

This International Standard may be used to provide test results as part of a production quality control system, as a basis of a contract, or as part of a research project.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

1

Iron ore pellets for blast furnace feedstocks — Determination of the free-swelling index

CAUTION — This International Standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety issues associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use.

1 Scope

This International Standard specifies a method to provide a relative measure for evaluating the increase in volume of iron ore pellets, when reduced in an unconstrained bed under conditions resembling those prevailing in the reduction zone of a blast furnace. It specifies the determination of the free-swelling index.

This International Standard is applicable to hot-bonded pellets.

iTeh STANDARD PREVIEW

2 Normative references

(standards.iteh.ai)

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies tandards/sist/662a3976-3eec-424a-88ce-

bbaf40b878c1/iso-4698-2007

ISO 3082:2000¹⁾, Iron ores — Sampling and sample preparation procedures

ISO 11323:2002, Iron ore and direct reduced iron — Vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11323 apply.

4 Principle

The volume of pellets in the test portion is measured at room temperature, using a volumetric apparatus. The test portion is isothermally reduced under unconstrained conditions in a fixed bed at 900 $^{\circ}$ C, using a reducing gas consisting of CO and N₂, for 60 min. The volume of the reduced pellets is measured at room temperature. The swelling index is calculated as the difference between the volume of the pellets after and before reduction, expressed as a percentage.

© ISO 2007 – All rights reserved

_

¹⁾ Under revision to incorporate ISO 10836, Iron ores — Method of sampling and sample preparation for physical testing.

5 Sampling, sample preparation and preparation of test portions

5.1 Sampling and sample preparation

Sampling of a lot and preparation of a test sample shall be in accordance with ISO 3082.

The size range for pellets shall be -12.5 mm + 10.0 mm.

A test sample of at least 1 kg, on a dry basis, of whole-sized pellets shall be obtained.

Oven-dry the test sample to constant mass at 105 $^{\circ}$ C \pm 5 $^{\circ}$ C and cool it to room temperature before preparation of the test portions.

NOTE Constant mass is achieved when the difference in mass between two subsequent measurements becomes less than 0,05 % of the initial mass of the test sample.

5.2 Preparation of test portions

At least 4 test portions, each one made up of 18 whole pellets, shall be obtained from the test sample by random selection.

6 Apparatus

6.1 General iTeh STANDARD PREVIEW

The test apparatus shall comprise:

(standards.iteh.ai)

a) ordinary laboratory equipment, such as an ovenithand tools; a time-control device and safety equipment;

https://standards.iteh.ai/catalog/standards/sist/662a3976-3eec-424a-88ce-

- b) a reduction-tube assembly;
- bbaf40b878c1/iso-4698-2007

- c) a furnace;
- d) a test portion holder;
- e) a system to supply the gases and regulate the flow rates;
- f) volumetric apparatus.

Figure 1 shows an example of the test apparatus.

- **6.2 Reduction tube**, made of non-scaling, heat-resistant metal to withstand temperatures higher than 900 $^{\circ}$ C and resistant to deformation. The internal diameter shall be 75 mm \pm 1 mm.
- **6.3 Test portion holder**, a wire basket made of non-scaling, heat-resistant metal to withstand temperatures higher than 900 °C. It shall comprise three levels, each made to receive six pellets, for a total of 18 pellets. Alternatively, the test portion holder may be made by welding a tube to the centre of three perforated plates, mutually parallel and equally spaced. The tube shall be top-opened and bottom-closed to allow the thermocouple insertion up to the middle of the test portion. The set shall be made of non-scaling, heat-resistant metal to withstand temperatures higher than 900 °C. The perforated plate shall be 4 mm thick, with its diameter 1 mm less than the tube internal diameter, the holes in the plate shall be 2 mm to 3 mm in diameter, at a pitch centre distance of 4 mm to 5 mm.

Figure 2 shows an example of a reduction tube with the test portion holder.

6.4 Furnace, having a heating capacity and temperature control able to maintain the entire test portion, as well as the gas entering the bed, at 900 °C \pm 10 °C.

- **6.5 Gas-supply system**, capable of supplying the gases and regulating gas flow rates.
- **6.6 Volumetric apparatus**, capable of measuring the volume of the test portion to an accuracy of 0,2 mL.

Annex B shows examples of volumetric apparatus.

7 Test conditions

7.1 General

Volumes and flow rates of gases are measured at a reference temperature of 0 °C and at a reference atmospheric pressure of 101,325 kPa (1,013 25 bar).

7.2 Reducing gas

7.2.1 Composition

The reducing gas shall consist of:

```
CO 30,0 % \pm 0,5 % (volume fraction)
```

 N_2 70,0 % ± 0,5 % (volume fraction)

iTeh STANDARD PREVIEW

7.2.2 Purity

(standards.iteh.ai)

Impurities in the reducing gas shall not exceed:

H₂ 0,2 % (volume fraction) ISO 4698:2007 (volume fraction) 130 4698:2007 (volume fraction) 1

bbaf40b878c1/iso-4698-2007

CO₂ 0,2 % (volume fraction)

O₂ 0,1 % (volume fraction)

H₂O 0,2 % (volume fraction)

7.2.3 Flow rate

The flow rate of the reducing gas, during the entire reducing period, shall be maintained at 15 L/min ± 1 L/min.

7.3 Heating and cooling gas

Nitrogen (N_2) shall be used as the heating and cooling gas. Impurities shall not exceed 0,1 % (volume fraction).

The flow rate of N_2 shall be maintained at 10 L/min until the test portion reaches 900 °C, and at 15 L/min during the temperature-equilibration period. During cooling, it shall be maintained at 5 L/min.

7.4 Temperature of the test portion

The temperature of the entire test portion shall be maintained at 900 $^{\circ}$ C \pm 10 $^{\circ}$ C during the entire reducing period and, as such, the reducing gas shall be preheated before entering the test portion.

© ISO 2007 – All rights reserved

8 Procedure

8.1 Number of determinations for the test

Carry out the test as many times as required by the procedure in Annex A.

8.2 Reduction

Determine the volume of the test portion (V_0) to an accuracy of 0,2 mL, in accordance with one of the methods specified in Annex B.

Place 6 pellets on each of the 3 levels of the test portion holder (6.3) and place it in the reduction tube (6.2). Close the top of the reduction tube. Connect the thermocouple, ensuring that its tip is in the centre of the test portion. Close the top of the reduction tube and insert it in the furnace.

Connect the gas-supply system (6.5).

Pass a flow of N_2 through the test portion at a rate of at least 5 L/min and commence heating. When the temperature of the test portion approaches 900 °C, increase the flow to 15 L/min \pm 1 L/min. After reaching 900 °C \pm 10 °C, maintain the test portion under these conditions for 15 min.

DANGER — Carbon monoxide and the reducing gas, which contains carbon monoxide, are toxic and therefore hazardous. Testing shall be carried out in a well ventilated area or under a ventilation hood. Precautions should be taken for the safety of the operator, according to the safety codes of each country.

iTeh STANDARD PREVIEW

Introduce the reducing gas at a flow rate of 15 L/min \pm 1 L/min to replace the N_2 . After 60 min of reduction, turn off the power. (standards.iteh.ai)

NOTE Some pellets show a higher degree of swelling within a shorter reduction time than 60 min. Therefore, a shorter reduction time may be used as an alternative when appropriate, e.g. 40 min.

https://standards.iteh.ai/catalog/standards/sist/662a3976-3eec-424a-88ce-

Replace the reducing gas with N_2 at a flow rate of 5 L7min Remove the reduction tube from the furnace (6.4) while maintaining the flow of N_2 until the test portion reaches room temperature (below 50 °C).

8.3 Volume determination

Remove the test portion from the reduction tube and immediately determine and register the total volume of the test portion (V_1) , applying the same method used for the determination of V_0 .

9 Expression of results

9.1 Calculation of the free-swelling index (V_{FS})

The free-swelling index, $V_{\rm FS}$, expressed as a percentage, is calculated from the following equation:

$$V_{FS} = \frac{V_1 - V_0}{V_0} \times 100$$

where

 V_0 is the volume, in millilitres, of the test portion before reduction;

 V_1 is the volume, in millilitres, of the test portion after reduction.

Record the result to one decimal place.

9.2 Repeatability and acceptance of test results

Follow the procedure in Annex A by using the repeatability value, r = 3.0 (%, absolute). The results shall be reported to one decimal place.

10 Test report

The test report shall include the following information:

- a) a reference to this International Standard, i.e. ISO 4698:2007;
- b) all details necessary for the identification of the sample;
- c) the name and address of the test laboratory;
- d) the date of the test;
- e) the date of the test report;
- f) the signature of the person responsible for the test;
- g) details of any operation and any test conditions not specified in this International Standard or regarded as optional, as well as any incident which may have had an influence on the results;
- h) the free-swelling index, V_{FS} , STANDARD PREVIEW
- i) the time of reduction, if it is not 60 min;
- j) the type of volumetric method employed. ISO 4698:2007 https://standards.rich.avcatalog/standards/sist/662a3976-3eec-424a-88ce-bbaf40b878c1/iso-4698-2007

11 Verification

Regular checking of the apparatus is essential to ensure test result reliability. The frequency of checking is a matter for each laboratory to determine.

The conditions of the following items shall be checked:

- reduction tube:
- temperature control and measurement devices;
- gas flow meters;
- purity of gases;
- recording system;
- time-control device;
- volumetric apparatus.

It is recommended that internal reference material be prepared and used periodically to check test repeatability.

Appropriate records of verification activities shall be maintained.

© ISO 2007 – All rights reserved