

Designation: D 2216 – 98

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass¹

This standard is issued under the fixed designation D 2216; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope *

1.1 This test method covers the laboratory determination of the water (moisture) content by mass of soil, rock, and similar materials where the reduction in mass by drying is due to loss of water except as noted in 1.4, 1.5, and 1.7. For simplicity, the word "material" hereinafter also refers to either soil or rock, whichever is most applicable.

1.2 Some disciplines, such as soil science, need to determine water content on the basis of volume. Such determinations are beyond the scope of this test method.

1.3 The water content of a material is defined in 3.2.1.

1.4 The term "solid material" as used in geotechnical engineering is typically assumed to mean naturally occurring mineral particles of soil and rock that are not readily soluble in water. Therefore, the water content of materials containing extraneous matter (such as cement, and the like) may require special treatment or a qualified definition of water content. In addition, some organic materials may be decomposed by oven drying at the standard drying temperature for this method (110°C). Materials containing gypsum (calcium sulfate dihydrate or other compounds having significant amounts of hydrated water) may present a special problem as this material slowly dehydrates at the standard drying temperature (110°C) and at very low relative humidities, forming a compound (calcium sulfate hemihydrate) which is not normally present in natural materials except in some desert soils. In order to reduce the degree of dehydration of gypsum in those materials containing gypsum, or to reduce decomposition in highly organic soils, it may be desirable to dry these materials at 60°C or in a desiccator at room temperature. Thus, when a drying temperature is used which is different from the standard drying temperature as defined by this test method, the resulting water content may be different from standard water content determined at the standard drying temperature.

NOTE 1—Test Methods D 2974 provides an alternate procedure for determining water content of peat materials.

1.5 Materials containing water with substantial amounts of soluble solids (such as salt in the case of marine sediments) when tested by this method will give a mass of solids which includes the previously soluble solids. These materials require special treatment to remove or account for the presence of precipitated solids in the dry mass of the specimen, or a qualified definition of water content must be used. For example, see Noorany² regarding information on marine soils.

1.6 This test method requires several hours for proper drying of the water content specimen. Test Method D 4643 provides for drying of the test specimen in a microwave oven which is a shorter process. Also see Gilbert³ for details on the background of this test method.

1.7 This standard requires the drying of material in an oven at high temperatures. If the material being dried is contaminated with certain chemicals, health and safety hazards can exist. Therefore, this standard should not be used in determining the water content of contaminated soils unless adequate health and safety precautions are taken.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids⁴
- D 2974 Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils⁴
- D 4220 Practice for Preserving and Transporting Soil Samples⁴
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils⁴
- D 4643 Test Method for Determination of Water (Moisture)

¹ This test method is under the jurisdiction of ASTM Committee D-18 on Soil and Rock and is the direct responsibility of Subcommittee D18.03 on Texture, Plasticity and Density Characteristics of Soils.

Current edition approved Feb. 10, 1998. Published January 1999. Originally published as D 2216 – 63 T. Last previous edition D 2216 – 92.

² Noorany, I., "Phase Relations in Marine Soils", Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 4, April 1984, pp. 539–543.

³ Gilbert, P.A., "Computer Controlled Microwave Oven System for Rapid Water Content Determination", Tech. Report GL-88–21, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, November 1988.

⁴ Annual Book of ASTM Standards, Vol 04.08.

Content of Soil by the Microwave Oven Method⁴

- D 4753 Specification for Evaluating, Selecting, and Specifying Balances and Scales for Use in Soil and Rock Testing⁴
- D 6026 Guide for Using Significant Digits in Calculating and Reporting Geotechnical Test Data⁵
- E 145 Specification for Gravity-Convection And Forced-Ventilation Ovens⁶

3. Terminology

3.1 Refer to Terminology D 653 for standard definitions of terms.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *water content (of a material)*—the ratio expressed as a percent of the mass of "pore" or "free" water in a given mass of material to the mass of the solid material. A standard temperature of $110^{\circ} \pm 5^{\circ}$ C is used to determine these masses.

4. Summary of Test Method

4.1 A test specimen is dried in an oven at a temperature of $110^{\circ} \pm 5^{\circ}$ C to a constant mass. The loss of mass due to drying is considered to be water. The water content is calculated using the mass of water and the mass of the dry specimen.

5. Significance and Use

5.1 For many materials, the water content is one of the most significant index properties used in establishing a correlation between soil behavior and its index properties.

5.2 The water content of a material is used in expressing the phase relationships of air, water, and solids in a given volume of material.

5.3 In fine-grained (cohesive) soils, the consistency of a given soil type depends on its water content. The water content of a soil, along with its liquid and plastic limits as determined by Test Method D 4318, is used to express its relative consistency or liquidity index.

6. Apparatus

6.1 Drying Oven, thermostatically-controlled, preferably of the forced-draft type, meeting the requirements of Specification E 145 and capable of maintaining a uniform temperature of 110 \pm 5°C throughout the drying chamber.

6.2 *Balances*—All balances must meet the requirements of Specification D 4753 and this section. A Class GP1 balance of 0.01g readability is required for specimens having a mass of up to 200 g (excluding mass of specimen container) and a Class GP2 balance of 0.1g readability is required for specimens having a mass over 200 g. However, the balance used may be controlled by the number of significant digits needed (see 8.2.1 and 12.1.2).

6.3 Specimen Containers—Suitable containers made of material resistant to corrosion and change in mass upon repeated heating, cooling, exposure to materials of varying pH, and cleaning. Unless a dessicator is used, containers with closefitting lids shall be used for testing specimens having a mass of less than about 200 g; while for specimens having a mass greater than about 200 g, containers without lids may be used (see Note 7). One container is needed for each water content determination.

NOTE 2—The purpose of close-fitting lids is to prevent loss of moisture from specimens before initial mass determination and to prevent absorption of moisture from the atmosphere following drying and before final mass determination.

6.4 *Desiccator*—A desiccator cabinet or large desiccator jar of suitable size containing silica gel or anhydrous calcium sulfate. It is preferable to use a desiccant which changes color to indicate it needs reconstitution. See 10.5.

NOTE 3—Anhydrous calcium sulfate is sold under the trade name Drierite.

6.5 *Container Handling Apparatus*, gloves, tongs, or suitable holder for moving and handling hot containers after drying.

6.6 *Miscellaneous*, knives, spatulas, scoops, quartering cloth, sample splitters, etc, as required.

7. Samples

7.1 Samples shall be preserved and transported in accordance with Practice 4220 Groups B, C, or D soils. Keep the samples that are stored prior to testing in noncorrodible airtight containers at a temperature between approximately 3 and 30°C and in an area that prevents direct contact with sunlight. Disturbed samples in jars or other containers shall be stored in such a way as to prevent or minimize moisture condensation on the insides of the containers.

7.2 The water content determination should be done as soon as practicable after sampling, especially if potentially corrodible containers (such as thin-walled steel tubes, paint cans, etc.) or plastic sample bags are used.

8. Test Specimen

8.1 For water contents being determined in conjunction with another ASTM method, the specimen mass requirement stated in that method shall be used if one is provided. If no minimum specimen mass is provided in that method then the values given below shall apply. See Howard⁷ for background data for the values listed.

8.2 The minimum mass of moist material selected to be representative of the total sample shall be in accordance with the following:

Maximum particle size (100 % passing)	Standard Sieve Size	Recommended minimum mass of moist test specimen for water content reported to ± 0.1 %	Recommended minimum mass of moist test spec- imen for water content reported to ± 1 %
2 mm or less	No. 10	20 g	20 g ^A
4.75 mm	No. 4	100 g	20 g ^A
9.5 mm	3⁄8-in.	500 g	50 g
19.0 mm	3⁄4-in.	2.5 kg	250 g
37.5 mm	1½ in.	10 kg	1 kg

⁷ Howard, A. K., "Minimum Test Specimen Mass for Moisture Content Determination", *Geotechnical Testing Journal*, A.S.T.M., Vol. 12, No. 1, March 1989, pp. 39-44.

⁵ Annual Book of ASTM Standards, Vol 04.09.

⁶ Annual Book of ASTM Standards, Vol 14.02.