INTERNATIONAL STANDARD ISO/IEC 13818-7 Second edition 2003-08-01 # Information technology — Generic coding of moving pictures and associated audio information — Part 7: Advanced Audio Coding (AAC) Technologies de l'information — Codage générique des images (s'animées et du son associé — Partie 7: Codage du son avancé (AAC) ISO/IEC 13818-7:2003 https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 13818-7:2003 https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 #### © ISO/IEC 2003 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland #### Contents Page Forewordvi Introductionvii 1.1 MPEG-2 AAC Tools Overview 1 2 Normative references 8 3 4.1 Arithmetic operators15 4.2 Logical operators.......16 4.3 4.4 4.5 4.6 4.7 6.1 Audio Data Interchange Format, ADIF......19 6.2 6.2.1 Fixed Header of ADTS. A. L. Variable Header of ADTS......21 6.2.2 Error Detection (Standar us.1ten.ar) 21 6.2.3 Raw Data 21 Profiles ISO/IEC 13818-7:2003 33 Profiles https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-7.1 Main d80d5c73b0bb/iso-iec-13818-7-2003 33 7.1.1 Low complexity.......33 712 7.1.3 Scalable sampling rate33 7.1.4 Naming convention for MPEG-2 AAC decoders and bitstreams.......33 7.1.5 Minimum decoder capability for specified number of main audio channels and profile ... 34 7.1.6 Profile dependent tool parameters34 7.2 Profile interoperability.......34 Interoperability of bitstreams and decoders34 8.1 8.1.1 8.1.2 8.1.3 Audio Data Interchange Format ADIF40 8.1.4 Audio Data Transport Stream ADTS40 8.2 Decoding of raw data40 8.2.1 8.2.2 8.2.3 Decoding process43 Decoding of a single_channel_element() (SCE), a channel_pair_element() (CPE) or an individual channel stream() (ICS).......44 8.3.1 8.3.2 8.3.3 Windows and window sequences48 Scalefactor bands and grouping48 8.3.4 8.3.5 Order of spectral coefficients in spectral_data()50 8.3.6 Output word length50 Matrix-mixdown method51 8.3.7 | | 8.4 | Low Frequency Enhancement Channel (LFE) | 52 | |----|---|---|--| | | 8.4.1 | General | 52 | | | 8.5 | Program Config Element (PCE) | 52 | | | 8.5.1 | Implicit and defined channel configurations | 54 | | | 8.6 | Data Stream Element (DSE) | 55 | | | 8.6.1 | Data elements | 55 | | | 8.6.2 | | | | | 8.7 | Fill element (FIL) | | | | 8.7.1 | ` ' | | | | 8.7.2 | | | | | 8.7.3 | 9 | | | | 8.7.4 | • | | | | 8.8 | Tables | | | | 8.9 | Figures | | | 9 | | eless coding | | | • | 9.1 | Tool description | | | | 9.2 | Definitions | | | | 9.2.1 | | | | | 9.2.1 | | | | | 9.2.2 | Decoding process | | | | 9.4 | Tables | | | 40 | | ntization | | | 10 | 10.1 | Tool description | | | | 10.1 | | | | | | Definitions | 75 | | | 10.2 | | 75 | | | 10.3 | Decoding process (standards iteh ai) | 76 | | 11 | | | | | | 11.1 | Tool description | | | | 11.2 | DefinitionsISO/IEC 13818-7/2003 | 76 | | | 11.2 | https://standards.iteh.ai/catalog/standards/sist/5dd3HXh7_Xcae_4U75_ahaH_ | 76 | | | 11.2 | 2 Data elements | 76 | | | 11.2 | 3 Help elements | 76 | | | 11.3 | | | | | | Decoding process | | | | 11.3 | 1 Scalefactor bands | 77 | | | 11.3 | 1 Scalefactor bands | 77
77 | | | 11.3
11.3 | 1 Scalefactor bands | 77
77
77 | | 12 | 11.3
11.3
2 Join | 1 Scalefactor bands | 77
77
77
78 | | 12 | 11.3
11.3
2 Join
12.1 | 1 Scalefactor bands | 77
77
77
78
78 | | 12 | 11.3
11.3
2 Join
12.1
12.1 | 1 Scalefactor bands | 77
77
78
78
78 | | 12 | 11.3
11.3
2 Join
12.1
12.1 | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions | 77
77
78
78
78
78 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1 | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process | 77
77
78
78
78
78
78 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.1 | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo | 77
77
78
78
78
78
79
79 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.1
12.2 | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description | 77
77
78
78
78
78
79
79 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2 | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions | 77
77
78
78
78
78
79
79
79
80 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2 | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
78
79
79
79
80
80 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2 | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
78
79
79
80
80
81 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2 | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 4 Integration with intra channel prediction tool Coupling channel | 77
77
78
78
78
79
79
80
80
81
81 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2 | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
78
79
79
80
81
81
81 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
79
79
80
81
81
81 | | 12 | 11.3
11.3
Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
79
79
80
81
81
81 | | 12 | 11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
79
79
80
81
81
81
81 | | | 11.3
11.3
Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors | 77
77
78
78
78
78
79
79
80
81
81
81
82
85 | | | 11.3
11.3
Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions 3 Decoding process 4 Integration with intra channel prediction tool Coupling channel 1 Tool description 2 Definitions 3 Decoding process 4 Integration with intra channel prediction tool Coupling channel 1 Tool description 2 Definitions 3 Decoding process 4 Tables | 77
77
78
78
78
79
79
80
81
81
81
82
85
85 | | | 11.3
11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors. 3 Applying scalefactors. t coding | 77
77
78
78
78
79
79
80
81
81
81
82
85
85 | | | 11.3
11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions 3 Decoding process 4 Integration with intra channel prediction tool Coupling channel 1 Tool description 2 Definitions 3 Decoding process 4 Integration with intra channel prediction tool Coupling channel 1 Tool description 2 Definitions 3 Decoding process 4 Tables iction Tool description Definitions | 77
77
78
78
78
79
79
80
81
81
81
82
85
85
86 | | 12 | 11.3
11.3
11.3
2 Join
12.1
12.1
12.1
12.2
12.2
12.2
12.2
12. | 1 Scalefactor bands 2 Decoding of scalefactors 3 Applying scalefactors t coding M/S stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions 3 Decoding process Intensity stereo 1 Tool description 2 Definitions 3 Decoding process 4 Integration with intra channel prediction tool Coupling channel 1 Tool description 2 Definitions 3 Decoding process 4 Integration with intra channel prediction tool Coupling channel 1 Tool description 2 Definitions 3 Decoding process 4 Tables iction Tool description Definitions | 77
77
78
78
78
79
79
80
81
81
81
82
85
86
86 | | | 13.3.2 | and the state of t | | |--------|--------------------|--|--------------------| | | 13.3.3 | | | | 13 | | Diagrams | | | | | ooral Noise Shaping (TNS) | | | 14 | | Tool description | | | 14 | | Definitions | | | | 14.2. | | | | _ 14 | | Decoding process | | | - | | bank and block switching | | | 15 | | Tool description | | | 15 | | Definitions | | | | 15.2. | | | | 15 | | Decoding process | | | | 15.3. | | | | | 15.3.2 | | | | | 15.3.3 | | | | | | control1 | | | 16 | | Tool description1 | | | 16 | | Definitions | | | | 16.2. | | | | | 16.2.2 | · F · · · · · · · | | | 16 | | Decoding process1 1 Gain control data decoding1 | | | | 16.3. ² | | | | | 16.3.3 | 2 Gain control function setting | 103
10 <i>E</i> | | | | | UE | | 16 | 10.3.4 | 4 Synthesis filter | ロワ | | 16 | | Tables | | | Anne | | (normative) Huffman Codebook Tables | | | Anne | | | | | Anne | | (informative) Information on unused codebooks | 30 | | C. | 1 | (informative) Encoder | 30
 30 | | C.: | 2 | Gain control1 | 65 | | C.: | | Filterbank and block switching1 | | | C. | | Prediction1 | | | C. | | Temporal Noise Shaping (TNS)1 | | | C. | | Joint coding1 | | | C. | | Quantization 1 | | | C. | | Noiseless coding1 | | | Anne | | (informative) Patent holders | | | D. | | List of patent holders1 | | | Anne | | (informative) Registration procedure1 | | | E. | | Procedure for the request of a Registered Identifier (RID)1 | | | E.2 | | Responsibilities of the Registration Authority1 | | | Е. | | Contact information of the Registration Authority1 | | | E.4 | 4 | Responsibilities of parties requesting an RID1 | 85 | | E. | 5 . | Appeal procedure for denied applications1 | | | Anne | | (informative) Registration application form1 | | | Anne | | (informative) Registration Authority1 | | | Riblia | ogran | ihv 1 | 89 | ### **Foreword** ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote. ISO/IEC 13818-7 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 29, *Coding of audio, picture, multimedia and hypermedia information*. This second edition cancels and replaces the first edition (ISO/IEC 13818-7:1997), which has been technically revised. iTeh STANDARD PREVIEW ISO/IEC 13818 consists of the following parts, under the general title Information technology — Generic coding of moving pictures and associated audio information: Part 1: SystemsPart 2: Video <u>ISO/IEC 13818-7:2003</u> https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0- d80d5c73b0bb/iso-iec-13818-7-2003 - Part 3: Audio - Part 4: Conformance testing - Part 5: Software simulation - Part 6: Extensions for DSM-CC - Part 7: Advanced Audio Coding (AAC) - Part 9: Extension for real time interface for systems decoders - Part 10: Conformance extensions for Digital Storage Media Command and Control (DSM-CC) - Part 11: IPMP on MPEG-2 systems ### Introduction The standardization body ISO/IEC JTC 1/SC 29/WG 11, also known as the Moving Pictures Experts Group (MPEG), was established in 1988 to specify digital video and audio coding schemes at low data rates. MPEG completed its first phase of audio specifications (MPEG-1) in November 1992, ISO/IEC 11172-3. In its second phase of development, the MPEG Audio subgroup defined a multichannel extension to MPEG-1 audio that is backwards compatible with existing MPEG-1 systems (MPEG-2 BC) and defined an audio coding standard at lower sampling frequencies than MPEG-1, ISO/IEC 13818-3. ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 13818-7:2003 https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 13818-7:2003 https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 ### Information technology — Generic coding of moving pictures and associated audio information — ### Part 7: ### **Advanced Audio Coding (AAC)** ### 1 Scope This International Standard describes the MPEG-2 audio non-backwards compatible standard called MPEG-2 Advanced Audio Coding, AAC [1], a higher quality multichannel standard than achievable while requiring MPEG-1 backwards compatibility. This MPEG-2 AAC audio standard allows for ITU-R 'indistinguishable' quality according to [2] at data rates of 320 kbit/s for five full-bandwidth channel audio signals. The AAC decoding process makes use of a number of required tools and a number of optional tools. Table 1 lists the tools and their status as required or optional. Required tools are mandatory in any possible profile. Optional tools may not be required in some profiles. | iTeh | Table 1 AAC decoder tools W | |------|-----------------------------| | | | | | Tool Name | Required / Optional | |----------|---------------------------------|---------------------| | | Bitstream Formatter | Required | | | Noiseless Decoding | Required | | // | Inverse quantization | Required | | nttps:// | Rescaling | Required | | | M/S M/S | Optional | | | Prediction | Optional | | | Intensity | Optional | | | Dependently switched coupling | Optional | | | TNS | Optional | | | Filterbank / block switching | Required | | | Gain control | Optional | | | Independently switched coupling | Optional | ### 1.1 MPEG-2 AAC Tools Overview The basic structure of the MPEG-2 AAC system is shown in Figure 1 and Figure 2. As is shown in Table 1, there are both required and optional tools in the decoder. The data flow in this diagram is from left to right, top to bottom. The functions of the decoder are to find the description of the quantized audio spectra in the bitstream, decode the quantized values and other reconstruction information, reconstruct the quantized spectra, process the reconstructed spectra through whatever tools are active in the bitstream in order to arrive at the actual signal spectra as described by the input bitstream, and finally convert the frequency domain spectra to the time domain, with or without an optional gain control tool. Following the initial reconstruction and scaling of the spectrum reconstruction, there are many optional tools that modify one or more of the spectra in order to provide more efficient coding. For each of the optional tools that operate in the spectral domain, the option to "pass through" is retained, and in all cases where a spectral operation is omitted, the spectra at its input are passed directly through the tool without modification. The input to the <u>bitstream demultiplexer tool</u> is the MPEG-2 AAC bitstream. The demultiplexer separates the parts of the MPEG-AAC data stream into the parts for each tool, and provides each of the tools with the bitstream information related to that tool. ### ISO/IEC 13818-7:2003(E) The outputs from the bitstream demultiplexer tool are: - The sectioning information for the noiselessly coded spectra - The noiselessly coded spectra - The M/S decision information (optional) - The predictor state information (optional) - The intensity stereo control information and coupling channel control information (both optional) - The temporal noise shaping (TNS) information (optional) - The filterbank control information - The gain control information (optional) The <u>noiseless decoding tool</u> takes information from the bitstream demultiplexer, parses that information, decodes the Huffman coded data, and reconstructs the quantized spectra and the Huffman and DPCM coded scalefactors. The inputs to the noiseless decoding tool are: - The sectioning information for the noiselessly coded spectra - The noiselessly coded spectratandards.iteh.ai) The outputs of the Noiseless Decoding tool are: - The decoded integer representation of the scale factors. 2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 - The quantized values for the spectra The <u>inverse quantizer tool</u> takes the quantized values for the spectra, and converts the integer values to the non-scaled, reconstructed spectra. This quantizer is a non-uniform quantizer. The input to the Inverse Quantizer tool is: • The quantized values for the spectra The output of the inverse quantizer tool is: • The un-scaled, inversely quantized spectra The <u>rescaling tool</u> converts the integer representation of the scalefactors to the actual values, and multiplies the un-scaled inversely quantized spectra by the relevant scalefactors. The inputs to the rescaling tool are: - The decoded integer representation of the scalefactors - The un-scaled, inversely quantized spectra The output from the scalefactors tool is: • The scaled, inversely quantized spectra The M/S tool converts spectra pairs from Mid/Side to Left/Right under control of the M/S decision information in order to improve coding efficiency. The inputs to the M/S tool are: - The M/S decision information - The scaled, inversely quantized spectra related to pairs of channels The output from the M/S tool is: • The scaled, inversely quantized spectra related to pairs of channels, after M/S decoding NOTE The scaled, inversely quantized spectra of individually coded channels are not processed by the M/S block, rather they are passed directly through the block without modification. If the M/S block is not active, all spectra are passed through this block unmodified. The <u>prediction tool</u> reverses the prediction process carried out at the encoder. This prediction process re-inserts the redundancy that was extracted by the prediction tool at the encoder, under the control of the predictor state information. This tool is implemented as a second order backward adaptive predictor. The inputs to the prediction tool are: - The predictor state information - The scaled, inversely quantized spectral PREVIEW The output from the prediction tool isindards.iteh.ai) • The scaled, inversely quantized spectra, after prediction is applied. ISO/IEC 13818-7:2003 NOTE If the prediction is disabled, the scaled inversely quantized spectra are passed directly through the block without modification. The intensity stereo tool implements intensity stereo decoding on pairs of spectra. The inputs to the intensity stereo tool are: - The inversely quantized spectra - The intensity stereo control information The output from the intensity stereo tool is: • The inversely quantized spectra after intensity channel decoding. NOTE The scaled, inversely quantized spectra of individually coded channels are passed directly through this tool without modification, if intensity stereo is not indicated. The intensity stereo tool and M/S tool are arranged so that the operation of M/S and intensity stereo are mutually exclusive on any given scalefactor band and group of one pair of spectra. The <u>coupling tool</u> for <u>dependently switched</u> coupling channels adds the relevant data from dependently switched coupling channels to the spectra, as directed by the coupling control information. The inputs to the coupling tool are: - The inversely quantized spectra - The coupling control information ### ISO/IEC 13818-7:2003(E) The output from the coupling tool is: • The inversely quantized spectra coupled with the dependently switched coupling channels. NOTE The scaled, inversely quantized spectra are passed directly through this tool without modification, if coupling is not indicated. Depending on the coupling control information, dependently switched coupling channels might either be coupled before or after the TNS processing. The <u>coupling tool</u> for <u>independently switched</u> coupling channels adds the relevant data from independently switched coupling channels to the time signal, as directed by the coupling control information. The inputs to the coupling tool are: - The time signal as output by the filterbank - The coupling control information The output from the coupling tool is: • The time signal coupled with the independently switched coupling channels. NOTE The time signal is passed directly through this tool without modification, if coupling is not indicated. The temporal noise shaping (TNS) tool implements a control of the fine time structure of the coding noise. In the encoder, the TNS process has flattened the temporal envelope of the signal to which it has been applied. In the decoder, the inverse process is used to restore the actual temporal envelope(s), under control of the TNS information. This is done by applying a filtering process to parts of the spectral data. ISO/IEC 13818-7:2003 The inputs to the TNS tootpare and ards. iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 - The inversely quantized spectra - The TNS information The output from the TNS block is: • The inversely quantized spectra NOTE If this block is disabled, the inversely quantized spectra are passed through without modification. The <u>filterbank / block switching tool</u> applies the inverse of the frequency mapping that was carried out in the encoder. An inverse modified discrete cosine transform (IMDCT) is used for the filterbank tool. The IMDCT can be configured to support either one set of 128 or 1024, or four sets of 32 or 256 spectral coefficients. The inputs to the filterbank tool are: - The inversely quantized spectra - The filterbank control information The output(s) from the filterbank tool is (are): • The time domain reconstructed audio signal(s). When present, the <u>gain control tool</u> applies a separate time domain gain control to each of 4 frequency bands that have been created by the gain control PQF filterbank in the encoder. Then, it assembles the 4 frequency bands and reconstructs the time waveform through the gain control tool's filterbank. The inputs to the gain control tool are: - The time domain reconstructed audio signal(s) - The gain control information The output(s) from the gain control tool is (are): • The time domain reconstructed audio signal(s) If the gain control tool is not active, the time domain reconstructed audio signal(s) are passed directly from the filterbank tool to the output of the decoder. This tool is used for the scalable sampling rate (SSR) profile only. ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 13818-7:2003 https://standards.iteh.ai/catalog/standards/sist/5dd308b2-8cae-4925-aba0-d80d5c73b0bb/iso-iec-13818-7-2003 Figure 1 — MPEG-2 AAC Encoder Block Diagram Figure 2 — MPEG-2 AAC Decoder Block Diagram