

SLOVENSKI STANDARD kSIST FprEN 16320:2013

01-maj-2013

Gnojila - Določevanje elementov v sledovih - Določevanje živega srebra s tehniko hladnih par po raztapljanju v zlatotopki

Fertilizers - Determination of trace elements - Determination of mercury by vapour generation (VG) after aqua regia dissolution

Düngemittel - Bestimmung von Elementspuren - Bestimmung von Quecksilber mit Verdampfungstechnik (VG) nach Königswasseraufschluss

Engrais - Dosage des éléments traces - Détermination du mercure par génération de vapeur (VG) après digestion à l'eau régale

Ta slovenski standard je istoveten z: FprEN 16320

ICS: 65.080 Gnojila

Fertilizers

kSIST FprEN 16320:2013

en,fr,de

kSIST FprEN 16320:2013

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

FINAL DRAFT FprEN 16320

February 2013

ICS 65.080

Will supersede CEN/TS 16320:2012

English Version

Fertilizers - Determination of trace elements - Determination of mercury by vapour generation (VG) after aqua regia dissolution

Engrais - Dosage des éléments traces - Détermination du mercure par génération de vapeur (VG) après digestion à l'eau régale

Düngemittel - Bestimmung von Elementspuren -Bestimmung von Quecksilber mit Verdampfungstechnik (VG) nach Königswasseraufschluss

This draft European Standard is submitted to CEN members for unique acceptance procedure. It has been drawn up by the Technical Committee CEN/TC 260.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

kSIST FprEN 16320:2013

FprEN 16320:2013 (E)

Contents

Foreword		
1	Scope	4
2	Normative references	4
3	Terms and definitions	4
4	Principle	4
5	Sampling and sample preparation	4
6	Reagents	4
7	Apparatus	5
8 8.1 8.2	Procedure General Preparation of the test solution	6
8.2.1 8.2.2	General	7
8.2.2 8.3 8.4	Preparation Preparation of the test solution for the correction of matrix effects by spike recovery Preparation of the blank test solution	7
8.5	Preparation of the calibration solutions	8
8.5.1 8.5.2	Calibration solutions for the analysis of mercury Calibration standards	
8.6	Determination of mercury	
8.6.1	General	
8.6.2 8.6.3	Determination by VG-AAS Spectrometer settings of VG-AAS	
8.6.4	Determination by VG-ICP-AES	
9 9.1	Calculation and expression of the results	
9.2	Correction for spike recovery	
9.3	Standard addition method	
9.4	Calculation of the element content in the sample	
10	Precision	
10.1 10.2	Inter laboratory tests Repeatability	
10.2	Reproducibility	
11	Test report	12
Annex	A (informative) Results of the inter-laboratory test	14
Bibliog	Bibliography	

Foreword

This document (FprEN 16320:2013) has been prepared by Technical Committee CEN/TC 260 "Fertilizers and liming materials", the secretariat of which is held by DIN.

This document is currently submitted to the Unique Acceptance Procedure.

This document will supersede CEN/TS 16320:2012.

The following changes have been made to the former edition:

- a) The CEN Technical Specification has been adopted as a European Standard;
- b) The document has been editorially revised.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

1 Scope

This European Standard specifies a method for the determination of the content of mercury in fertilizers after extraction with aqua regia and the detection of mercury by vapour generation (VG) coupled to an atomic absorption spectrometer or an inductively coupled plasma-atomic emission spectrometer. A limit of quantification of 0,01 mg/kg is to be expected.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 1482-2, Fertilizers and liming materials — Sampling and sample preparation — Part 2: Sample preparation

EN 12944-1:1999, Fertilizers and liming materials and soil improvers — Vocabulary — Part 1: General terms

EN 12944-2:1999, Fertilizers and liming materials and soil improvers — Vocabulary — Part 2: Terms relating to fertilizers

EN ISO 3696, Water for analytical laboratory use — Specification and test methods (ISO 3696)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 12944-1:1999 and EN 12944-2:1999 apply.

4 Principle

Mercury is extracted from the sample with aqua regia and conventional boiling. The concentration of mercury in the extract is measured by (cold) vapour generation (VG) coupled to a suitable detector, such as an atomic absorption spectrometer (AAS) or an inductively coupled plasma-atomic emission spectrometer (ICP-AES).

5 Sampling and sample preparation

Sampling is not part of the methods specified in this European Standard. A recommended sampling method is given in EN 1482-1.

Sample preparation shall be carried out in accordance with EN 1482-2.

6 Reagents

Use only reagents of recognized analytical grade.

Commercially available stock solutions shall be replaced according to the specifications from the supplier or after one year if prepared in the laboratory from available salts. Standard solutions shall be renewed monthly as a general rule.

- 6.1 Water, conforming to grade 2 of EN ISO 3696.
- **6.2** Hydrochloric acid, c(HCI) = 12 mol/l; 37 % volume fraction; $\rho \approx 1,18 \text{ g/ml}$.
- **6.3** Nitric acid, $c(HNO_3) = 16 \text{ mol/l}$; not less than 65 % volume fraction, $\rho \approx 1,42 \text{ g/ml}$.

6.4 Mixed solution of 0,8 mol/l nitric acid and 1,8 mol/l hydrochloric acid.

Mix 150 ml of hydrochloric acid (6.2) and 50 ml nitric acid (6.3) to 1,0 l of water (6.1).

6.5 Standard stock solution, mercury standard stock solution, e.g. ρ = 1 000 mg/l.

Use suitable stock solutions. Single-element stock solutions with adequate specification stating the acid used and the preparation technique are commercially available. It is recommended to use commercially available standard stock solutions for mercury.

6.6 Working standard solutions.

Depending on the scope, different working standard solutions may be necessary. In general, the stability of mercury working standard solutions should be checked.

6.6.1 Working standard solution I, $\rho = 10$ mg/l for mercury.

Dilute 1,00 ml of the standard stock solution for mercury (6.5) to 100,0 ml with the mixed acid solution (6.4). This solution is used to prepare 200 μ g/l mercury working standard solution.

6.6.2 Working standard solution II, $\rho = 200 \,\mu g/l$ for mercury.

Dilute 2,00 ml of the 10 mg/l mercury working standard solution I (6.6.1) to 100,0 ml with the mixed acid solution (6.4). This solution is used to prepare spiked test solutions and calibration solutions.

6.7 Reducing agents.

6.7.1 General.

Tin(II) chloride or sodium borohydride may be used as the reducing agent, but it is not advisable to use the two reagents alternately. Observe the instructions of the manufacturers of the apparatus. The concentration by mass of the reducing agent solutions may be varied to suit the system, and the relevant information provided by the manufacturer of the apparatus shall be observed.

6.7.2 Tin(II) chloride solution, $\rho(SnCl_2 2H_2O) = 100 \text{ g/l}.$

Dissolve 50 g of tin(II) chloride in approximately 100 ml of hydrochloric acid (6.2) in a 500 ml volumetric flask and dilute to the mark. Prepare a fresh solution daily.

6.7.3 Sodium borohydride solution, e.g. $\rho = 2 \text{ g/l.}$

Dissolve 2 g of sodium hydroxide pellets in water, add 2 g of sodium borohydride and dilute to 1 000 ml with water (6.1). Prepare a fresh solution daily and, when necessary, filter before use. When the analysis procedure is of a longer time it is recommended to cool the sodium borohydride solution (i.e. with ice around the flask) during its use in the vapour generation ICP-AES or AAS measurement.

WARNING — It is essential to observe the safety instructions for working with sodium borohydride. Sodium borohydride forms hydrogen with acids and this can result in an explosive air/hydrogen mixture. A permanent extraction system shall be provided at the point where measurements are carried out.

7 Apparatus

- 7.1 Common laboratory glassware.
- 7.2 Analytical balance, capable of weighing to an accuracy of 1 mg.

FprEN 16320:2013 (E)

7.3 Inductively coupled plasma-atomic emission spectrometer, with axial or radial viewing of the plasma and with suitable background correction.

The settings of the working conditions (e.g. gas flows, RF or plasma power, sample uptake rate, integration time, number of replicates) shall be optimised according the manufacturer's instructions. Radial viewing of the plasma may be used if it can be shown that the limit of quantification for mercury is below the required legal limit value.

7.4 Atomic absorption spectrometer, equipped with a heated quartz cuvette or a mercury absorption cell, or optionally with an amalgamation system.

7.5 Vapour generation equipment.

- 7.5.1 Continuous flow or flow-injection cold-vapour system.
- 7.5.2 Element-specific lamp for mercury.

7.6 Dilutor.

Instrument used for automated volumetric dilutions or other appropriate equipment (e.g. pipettes and volumetric glassware) to perform dilutions. The precision and accuracy of this type of equipment for volumetric dilutions shall be established, and controlled and documented regularly.

7.7 Ash-free filter paper, i.e. Whatman 589/2 or equivalent quality.

8 Procedure

8.1 General

Calibrations by standard additions with several standards or by matrix matching are very powerful calibration techniques and can be used to accurately correct for matrix effects from easy-ionisable elements (multiplicative matrix effects). Additive matrix effects (i.e. spectral interferences) are not corrected for with standard additions calibration. For matrix matching, additive matrix effects will be corrected for when the added matrix is the cause of the matrix effect. The main drawback of calibration by standard addition with several standards is the requirement for a calibration function for each sample type, which is a time consuming process. For matrix matching a profound knowledge of the sample matrix is needed, which is not always necessarily available. These two techniques may thus not be practical to use in routine fertilizer laboratories.

It is therefore suggested that calibrations are to be performed by means of external calibration and correction of matrix effects by addition of one known spike of a standard solution (spike recovery). The method of external calibration and correction for spike recovery allows for the analysis of fertilizers with unknown matrix composition or with a matrix that cannot be synthetically imitated easily. This calibration technique may not be as precise as calibration by standard additions with several standards but the increased uncertainty is small compared to the total uncertainty of the method, if the total analyte concentration is in the linear working range after the spike and the added spike corresponds to at least a doubling of the analyte concentration. Many matrix errors can be compensated for by this procedure, if they are not additive (e.g. spectral interferences). Aliquots of the sample solution are analysed by the means of external calibration and then one aliquot is spiked with known concentrations of the analytes without changing the matrix of the sample solution. The calculated spike recovery is then used to correct the concentration calculated from the external calibration function. The concentration of the spikes shall be in the linear working range of the analytical detection technique used.