
Designation: E 1655 – 04

Standard Practices for
Infrared Multivariate Quantitative Analysis1

This standard is issued under the fixed designation E 1655; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 These practices cover a guide for the multivariate
calibration of infrared spectrometers used in determining the
physical or chemical characteristics of materials. These prac-
tices are applicable to analyses conducted in the near infrared
(NIR) spectral region (roughly 780 to 2500 nm) through the
mid infrared (MIR) spectral region (roughly 4000 to 400
cm−1).

NOTE 1—While the practices described herein deal specifically with
mid- and near-infrared analysis, much of the mathematical and procedural
detail contained herein is also applicable for multivariate quantitative
analysis done using other forms of spectroscopy. The user is cautioned that
typical and best practices for multivariate quantitative analysis using other
forms of spectroscopy may differ from practices described herein for mid-
and near-infrared spectroscopies.

1.2 Procedures for collecting and treating data for develop-
ing IR calibrations are outlined. Definitions, terms, and cali-
bration techniques are described. Criteria for validating the
performance of the calibration model are described.

1.3 The implementation of these practices require that the
IR spectrometer has been installed in compliance with the
manufacturer’s specifications. In addition, it assumes that, at
the times of calibration and of validation, the analyzer is
operating at the conditions specified by the manufacturer.

1.4 These practices cover techniques that are routinely
applied in the near and mid infrared spectral regions for
quantitative analysis. The practices outlined cover the general
cases for coarse solids, fine ground solids, and liquids. All
techniques covered require the use of a computer for data
collection and analysis.

1.5 These practices provide a questionnaire against which
multivariate calibrations can be examined to determine if they
conform to the requirements defined herein.

1.6 For some multivariate spectroscopic analyses, interfer-
ences and matrix effects are sufficiently small that it is possible
to calibrate using mixtures that contain substantially fewer
chemical components than the samples that will ultimately be

analyzed. While these surrogate methods generally make use
of the multivariate mathematics described herein, they do not
conform to procedures described herein, specifically with
respect to the handling of outliers. Surrogate methods may
indicate that they make use of the mathematics described
herein, but they should not claim to follow the procedures
described herein.

1.7 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 1265 Practice for Sampling Liquified Petroleum (LP)

Gases (Manual Method)
D 4057 Practice for Manual Sampling of Petroleum and

Petroleum Products
D 4177 Practice for Automatic Sampling of Petroleum and

Petroleum Products3

D 4855 Practices for Comparing Test Methods
D 6122 Practice for Validation of Multivariate Process In-

frared Spectrophotometers
D 6299 Practice for Applying Statistical Quality Assurance

Techniques to Evaluate Analytical Measurement System
Performance5

D 6300 Practice for Determination of Precision and Bias
Data for Use in Test Methods for Petroleum Products and
Lubricants

E 131 Terminology Relating to Molecular Spectroscopy
E 168 Practices for General Techniques of Infrared Quanti-

tative Analysis7

E 275 Practice for Describing and Measuring Performance
of Ultraviolet, Visible, and Near Infrared Spectrophotom-
eters7

E 334 Practice for General Techniques of Infrared Mi-
croanalysis7

E 456 Terminology Relating to Quality and Statistics
E 691 Practice for Conducting an Interlaboratory Study to

Determine the Precision of a Test Method8

1 These practices are under the jurisdiction of ASTM Committee E13 on
Molecular Spectroscopy and are the direct responsibility of Subcommittee E13.11
on Chemometrics.
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E 932 Practice for Describing and Measuring Performance
of Dispersive Infrared Spectrometers7

E 1421 Practice for Describing and Measuring Performance
of Fourier Transform Infrared (FT-IR) Spectrometers:
Level Zero and Level One Tests7

E 1866 Guide for Establishing Spectrophotometer Perfor-
mance Tests7

E 1944 Practice for Describing and Measuring Performance
of Fourier Transform Near-Infrared (FT-NIR) Spectrom-
eters: Level Zero and Level One Tests7

3. Terminology

3.1 Definitions—For terminology related to molecular spec-
troscopic methods, refer to Terminology E 131. For terminol-
ogy relating to quality and statistics, refer to Terminology
E 456.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 analysis—in the context of this practice, the process of

applying the calibration model to an absorption spectrum so as
to estimate a component concentration value or property.

3.2.2 calibration—a process used to create a model relating
two types of measured data. In the context of this practice, a
process for creating a model that relates component concen-
trations or properties to absorbance spectra for a set of known
reference samples.

3.2.3 calibration model—the mathematical expression that
relates component concentrations or properties to absorbances
for a set of reference samples.

3.2.4 calibration samples—the set of reference samples
used for creating a calibration model. Reference component
concentration or property values are known (measured by
reference method) for the calibration samples and correlated to
the absorbance spectra during the calibration.

3.2.5 estimate—the value for a component concentration or
property obtained by applying the calibration model for the
analysis of an absorption spectrum.

3.2.6 model validation—the process of testing a calibration
model to determine bias between the estimates from the model
and the reference method, and to test the expected agreement
between estimates made with the model and the reference
method.

3.2.7 multivariate calibration—a process for creating a
model that relates component concentrations or properties to
the absorbances of a set of known reference samples at more
than one wavelength or frequency.

3.2.8 reference method—the analytical method that is used
to estimate the reference component concentration or property
value which is used in the calibration and validation proce-
dures.

3.2.9 reference values—the component concentrations or
property values for the calibration or validation samples which
are measured by the reference analytical method.

3.2.10 spectrometer/spectrophotometer qualification,
n—the procedures by which a user demonstrates that the
performance of a specific spectrometer/spectrophotometer is
adequate to conduct a multivariate analysis so as to obtain
precision consistent with that specified in the method.

3.2.11 surrogate calibration, n—a multivariate calibration
that is developed using a calibration set which consists of

mixtures which contain substantially fewer chemical compo-
nents than the samples which will ultimately be analyzed.

3.2.12 surrogate method, n—a standard test method that is
based on a surrogate calibration.

3.2.13 validation samples—a set of samples used in vali-
dating the model. Validation samples are not part of the set of
calibration samples. Reference component concentration or
property values are known (measured by reference method),
and are compared to those estimated using the model.

4. Summary of Practices

4.1 Multivariate mathematics is applied to correlate the
absorbances measured for a set of calibration samples to
reference component concentrations or property values for the
set of samples. The resultant multivariate calibration model is
applied to the analysis of spectra of unknown samples to
provide an estimate of the component concentration or prop-
erty values for the unknown sample.

4.2 Multilinear regression (MLR), principal components
regression (PCR), and partial least squares (PLS) are examples
of multivariate mathematical techniques that are commonly
used for the development of the calibration model. Other
mathematical techniques are also used, but may not detect
outliers, and may not be validated by the procedure described
in these practices.

4.3 Statistical tests are applied to detect outliers during the
development of the calibration model. Outliers include high
leverage samples (samples whose spectra contribute a statisti-
cally significant fraction of one or more of the spectral
variables used in the model), and samples whose reference
values are inconsistent with the model.

4.4 Validation of the calibration model is performed by
using the model to analyze a set of validation samples and
statistically comparing the estimates for the validation samples
to reference values measured for these samples, so as to test for
bias in the model and for agreement of the model with the
reference method.

4.5 Statistical tests are applied to detect when values esti-
mated using the model represent extrapolation of the calibra-
tion.

4.6 Statistical expressions for calculating the repeatability
of the infrared analysis and the expected agreement between
the infrared analysis and the reference method are given.

5. Significance and Use

5.1 These practices can be used to establish the validity of
the results obtained by an infrared (IR) spectrometer at the time
the calibration is developed. The ongoing validation of esti-
mates produced by analysis of unknown samples using the
calibration model should be covered separately (see for ex-
ample, Practice D 6122).

5.2 These practices are intended for all users of infrared
spectroscopy. Near-infrared spectroscopy is widely used for
quantitative analysis. Many of the general principles described
in these practices relate to the common modern practices of
near-infrared spectroscopic analysis. While sampling methods
and instrumentation may differ, the general calibration meth-
odologies are equally applicable to mid-infrared spectroscopy.
New techniques are under study that may enhance those
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discussed within these practices. Users will find these practices
to be applicable to basic aspects of the technique, to include
sample selection and preparation, instrument operation, and
data interpretation.

5.3 The calibration procedures define the range over which
measurements are valid and demonstrate whether or not the
sensitivity and linearity of the analysis outputs are adequate for
providing meaningful estimates of the specific physical or
chemical characteristics of the types of materials for which the
calibration is developed.

6. Overview of Multivariate Calibration

6.1 The practice of infrared multivariate quantitative analy-
sis involves the following steps:

6.1.1 Selecting the Calibration Set—This set is also termed
the training set or spectral library set. This set is to represent all
of the chemical and physical variation normally encountered
for routine analysis for the desired application. Selection of the
calibration set is discussed in Section 17, after the statistical
terms necessary to define the selection criteria have been
defined.

6.1.2 Determination of Concentrations or Properties, or
Both, for Calibration Samples—The chemical or physical
properties, or both, of samples in the calibration set must be
accurately and precisely measured by the reference method in
order to accurately calibrate the infrared model for prediction
of the unknown samples. Reference measurements are dis-
cussed in Section 9.

6.1.3 The Collection of Infrared Spectra—The collection of
optical data must be performed with care so as to present
calibration samples, validation samples, and prediction (un-
known) samples for analysis in an alike manner. Variation in
sample presentation technique among calibration, validation,
and prediction samples will introduce variation and error which
has not been modeled within the calibration. Infrared instru-
mentation is discussed in Section 7 and infrared spectral
measurements in Section 8.

6.1.4 Calculating the Mathematical Model—The calcula-
tion of mathematical (calibration) models may involve a
variety of data treatments and calibration algorithms. The more
common linear techniques are discussed in Section 12. A
variety of statistical techniques are used to evaluate and
optimize the model. These techniques are described in Section
15. Statistics used to detect outliers in the calibration set are
covered in Section 16.

6.1.5 Validation of the Calibration Model—Validation of
the efficacy of a specific calibration model (equation) requires
that the model be applied for the analysis of a separate set of
test (validation) samples, and that the values predicted for these
test samples be statistically compared to values obtained by the
reference method. The statistical tests to be applied for
validation of the model are discussed in Section 18.

6.1.6 Application of the Model for the Analysis of
Unknowns—The mathematical model is applied to the spectra
of unknown samples to estimate component concentrations or
property values, or both, (see Section 13). Outlier statistics are
used to detect when the analysis involves extrapolation of the
model (see Section 16).

6.1.7 Routine Analysis and Monitoring—Once the efficacy
of calibration equations is established, the equations must be
monitored for continued accuracy and precision. Simulta-
neously, the instrument performance must be monitored so as
to trace any deterioration in performance to either the calibra-
tion model itself or to a failure in the instrumentation perfor-
mance. Procedures for verifying the performance of the analy-
sis are only outlined in Section 22 but are covered in detail in
Practice D 6122. The use of this method requires that a model
quality control material be established at the time the model is
developed. The model QC material is discussed in Section 22.
For practices to compare reference methods and analyzer
methods, refer to Practices D 4855.

6.1.8 Transfer of Calibrations—Transferable calibrations
are equations that can be transferred from the original instru-
ment, where calibration data were collected, to other instru-
ments where the calibrations are to be used to predict samples
for routine analysis. In order for a calibration to be transferable
it must perform prediction after transfer without a significant
decrease in performance, as indicated by established statistical
tests. In addition, statistical tests that are used to detect
extrapolation of the model must be preserved during the
transfer. Bias or slope adjustments, or both, are to be made
after transfer only when statistically warranted. Calibration
transfer, that is sometimes referred to as instrument standard-
ization, is discussed in Section 21.

7. Infrared Instrumentation

7.1 A complete description of all applicable types of infra-
red instrumentation is beyond the scope of these practices.
Only a general outline is given here.

7.2 The IR instrumentation is comprised of two categories,
including instruments that acquire continuous spectral data
over wavelength or frequency ranges (spectrophotometers),
and those that only examine one or several discrete wave-
lengths or frequencies (photometers).

7.2.1 Photometers may have one or a series of wavelength
filters and a single detector. These filters are mounted on a
turret wheel so that the individual wavelengths are presented to
a single detector sequentially. Continuously variable filters
may also be used in this fashion. These filters, either linear or
circular, are moved past a slit to scan the wavelength being
measured. Alternatively, photometers may have several mono-
chromatic light sources, such as light-emitting diodes, that
sequentially turn on and off.

7.3 Spectrophotometers can be classified, based upon the
procedure by which light is separated into component wave-
lengths. Dispersive instruments generally use a diffraction
grating to spatially disperse light into a continuum of wave-
lengths. In scanning-grating systems, the grating is rotated so
that only a narrow band of wavelengths is transmitted to a
single detector at any given time. Dispersion can occur before
the sample (pre-dispersed) or after the sample (post-dispersed).

7.3.1 Spectrophotometers are also available where the
wavelength selection is accomplished without moving parts,
using a photodiode array detector. Post-dispersion is utilized. A
grating can again provide this function, although other meth-
ods, such as a linear variable filter (LVF) accomplish the same
purpose (a LVF is a multilayer filter that has variable thickness
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along its length, such that different wavelengths are transmitted
at different positions). The photodiode array detector is used to
acquire a continuous spectrum over wavelength without me-
chanical motion. The array detector is a compact aggregate of
up to several thousand individual photodiode detectors. Each
photodiode is located in a different spectral region of the
dispersed light beam and detects a unique range of wave-
lengths.

7.3.2 The acousto-optical tunable filter is a continuous
variant of the fixed filter photometer with no moving optical
parts for wavelength selection. A birefrigent crystal (for ex-
ample, tellurium oxide) is used, in which acoustic waves at a
selected frequency are applied to select the wavelength band of
light transmitted through the crystal. Variations in the acoustic
frequency cause the crystal lattice spacing to change, that in
turn, causes the crystal to act as a variable transmission
diffraction grating for one wavelength (that is, a Bragg diffrac-
tor). A single detector is used to analyze the signal.

7.3.3 An additional category of spectrophotometers uses
mathematical transformations to convert modulated light sig-
nals into spectral data. The most well-known example is the
Fourier transform, that when applied to infrared (IR) is known
as FT-IR. Light is divided into two beams whose relative paths
are varied by use of a moving optical element (for example,
either a moving mirror, or a moving wedge of a high refractive
index material). The beams are recombined to produce an
interference pattern that contains all of the wavelengths of
interest. The interference pattern is mathematically converted
into spectral data using the Fourier transform. The FT method
can operate in the mid-IR and near-IR spectral regions. The FT
instruments use a single detector.

7.3.4 A second type of transformation spectrophotometer
uses the Hadamard transformation. Light is initially dispersed
with a grating. Light then passes through a mask mounted on
or adjacent to a single detector. The mask generates a series of
patterns. For example, these patterns may be formed by
electronically opening and shutting various locations, such as
in a liquid crystal display, or by moving an aperture or slit
through the beam. These modulations alter the energy distri-
bution incident upon the detector. A mathematical transforma-
tion is then used to convert the signal into spectral information.

7.4 Infrared instruments used in multivariate calibrations
should be installed and operated in accordance with the
instructions of the instrument manufacturer. Where applicable,
the performance of the instrument should be tested at the time
the calibration is conducted using procedures defined in the
appropriate ASTM practice (see 2.1). The performance of the
instrument should be monitored on a periodic basis using the
same procedures. The monitoring procedure should detect
changes in the performance of the instrument (relative to that
seen during collection of the calibration spectra) that would
affect the estimation made with the calibration model.

7.5 For most infrared quantitative applications involving
complex matrices, it is a general consensus that scanning-type
instruments (either dispersive or interferometer based) provide
the greatest performance, due to the stability and reproducibil-
ity of modern instrumentation and to the greater amount of
spectral data provided for computer interpretation. These data

allow for greater calibration flexibility and additional options
for selections of spectral areas less sensitive to band shifts and
extraneous noise within the spectral signal. Scanning/
interferometer-based systems also allow greater wavelength/
frequency precision between instruments due to internal
wavelength/frequency standardization techniques, and the pos-
sibilities of computer-generated spectral corrections. For ex-
ample, scanning instruments have received approval for com-
plex matrices, such as animal feed and forages (1, 2).2

7.6 Descriptions of instrumentation designs related to Refs
(1) and (2) are found in Refs (3) and (4). Other instrumentation
similar in performance to that described in these references is
acceptable for all near-infrared techniques described in these
practices.

7.7 For information describing the measurement of perfor-
mance of ultraviolet, visible, and near infrared spectrophotom-
eters, refer to Practice E 275. For information describing the
measurement of performance of dispersive infrared spectro-
photometers, refer to Practice E 932. For information describ-
ing the measurement performance of Fourier Transform mid-
infrared spectrophotometers, refer to Practice E 1421. For
information describing the measurement performance of Fou-
rier Transform near-infrared spectrophotometers, refer to Prac-
tice E 1944. For spectrophotometers to which these practice do
not apply, refer to Guide E 1866.

8. Infrared Spectral Measurements

8.1 Multivariate calibrations are based on Beer’s Law,
namely, the absorbance of a homogeneous sample containing
an absorbing substance is linearly proportional to the concen-
tration of the absorbing species. The absorbance of a sample is
defined as the logarithm to the base ten of the reciprocal of the
transmittance, (T).

A 5 log10~1/T!

The transmittance, T, is defined as the ratio of radiant power
transmitted by the sample to the radiant power incident on the
sample.

8.1.1 For measurements conducted by reflectance, the re-
flectance, R, is sometimes substituted for the transmittance T.
The reflectance is defined as the ratio of the radiant power
reflected by the sample to the radiant power incident on the
sample.

NOTE 2—The relationship A = log10(1/R) is not a definition, but rather
an approximation designed to linearize the relationship between the
measured reflectance, R, and the concentration of the absorbing species.
For some applications, other linearization functions (for example,
Kubelka-Munk) may be more appropriate (5).

8.1.2 For most types of instrumentation, the radiant power
incident on the sample cannot be measured directly. Instead, a
reference (background) measurement of the radiant power is
made without the sample being present in the light beam.

NOTE 3—To avoid confusion, the reference measurement of the radiant
power will be referred to as a background measurement, and the word

2 The boldface numbers in parentheses refer to a list of references at the end of
the text.
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reference will only be used to refer to measurements made by the
reference method against which the infrared is to be calibrated. (See
Section 9.)

8.1.3 A measurement is then conducted with the sample
present, and the ratio, T, is calculated. The background
measurement may be conducted in a variety of ways depending
on the application and the instrumentation. The sample and its
holder may be physically removed from the light beam and a
background measurement made on the “empty beam”. The
sample holder (cell) may be emptied, and a background
measurement may be taken through the “empty cell”.

NOTE 4—For optically thin cells, care may be necessary to avoid optical
interferences resulting from multiple internal reflections within the cell.
For very thick cells, differences in the refractive index between the sample
and the empty cell may change properties of the optical system, for
example, shift focal points.

8.1.4 The sample holder (cell) may be filled with a liquid
that has minimal absorption in the spectral range of interest,
and the background measurement may be taken through the
“background liquid.” Alternatively, the light beam may be split
or alternately passed through the sample and through an
“empty beam,” an “empty cell,” or a “background liquid.” For
reflectance measurements, the reflectance of a material having
minimal absorbance in the region of interest is generally used
as the background measurement.

8.1.5 The particular background referencing scheme that is
used may vary among instruments, and among applications.
The same background referencing scheme must be employed
for the measurement of all spectra of calibration samples,
validation samples, and unknown samples to be analyzed.

8.2 Traditionally, a sample is manually brought to the
instrument and placed in a suitable optical container (a cell or
cuvette with windows that transmit in the region of interest).
Alternatively, transfer pipes can continuously flow liquid
through an optical cell in the instrument for continuous
analysis. With optical fibers, the sample can be analyzed
remotely from the instrument. Light is sent to the sample
through an optical fiber or fibers and returned to the instrument
by means of another fiber or group of fibers. Instruments have
been developed that use single fibers to transmit and receive
the light, as well as those using bundles of fibers for this
purpose. Detectors and light sources external to the instrument
can also be used, in which case only one fiber or bundle is
needed. For spectral regions where transmitting fibers do not
exist, the same function can be performed over limited dis-
tances using appropriate optical transfer optics.

NOTE 5—If the instrument uses predispersion of the light, some caution
must be exercised to avoid introducing ambient light into the system at the
sample position, since such light may be detected, giving rise to erroneous
absorbance measurements.

8.3 Although most multivariate calibrations for liquids in-
volve the direct measurement of transmitted light, alternative
sampling technologies (for example, attenuated total reflec-
tance) can also be employed. Transmittance measurements can
be employed for some types of solids (for example, polymer
films), whereas other solids (for example, powdered solids) are
more commonly measured by diffuse reflectance techniques.

8.4 For most infrared instrumentation, a variety of adjust-
able parameters are available to control the collection and
computation of the spectral data. These parameters control, for
instance, the optical and digital resolution, and the rate of data
acquisition (scan speed). A detailed description of the spectral
acquisition parameters and their effect on multivariate calibra-
tions is beyond the scope of these practices. However, it is
essential that all adjustable parameters that control the collec-
tion and computation of spectral data be maintained constant
for the collection of spectra of calibration samples, validation
samples, and unknown samples for which estimates are to be
made.

8.5 For definitions and further description of general infra-
red quantitative measurement techniques, refer to Practice
E 168. For a description of general techniques of infrared
microanalysis, refer to Practice E 334.

9. Reference Method and Reference Values

9.1 Infrared spectroscopy requires calibration to determine
the proportionality relationship between the signals measured
and the component concentrations or properties that are to be
estimated. During the calibration, spectra are measured for
samples for which these reference values are known, and the
relationship between the sample absorbances and the reference
values is determined. The proportionality relationship is then
applied to the spectra of unknown samples to estimate the
concentration or property values for the sample.

9.2 For simple mixtures containing only a few chemical
components, it is generally possible to prepare mixtures that
can serve as standards for the multivariate calibration of an
infrared analysis. Because of potential interferences among the
absorbances of the components, it is not sufficient to vary the
concentration of only some of the mixture components, even
when analyses for only one component are being developed.
Instead, all components should be varied over a range repre-
sentative of that expected for future unknown samples that are
to be analyzed. Since infrared measurements are conducted on
a fixed volume of sample (for example, a fixed cell pathlength),
it is preferable that concentration reference values be expressed
in volumetric terms, for example, in volume percentage, grams
per millilitre, moles per cubic centimetre, and so forth. Devel-
oping multivariate calibrations for reference concentrations
expressed in other terms (for example, weight percentage) can
lead to models that are linear approximations to what is really
a nonlinear relationship and can lead to less accurate estimates
of the concentrations.

9.3 For complex mixtures, such as those obtained from
petrochemical processes, preparation of reference standards is
generally impractical, and the multivariate calibration of an
infrared analysis must typically be performed on actual process
samples. In this case, the reference values used to calibrate the
infrared analysis are obtained by a reference analytical method.
The accuracy of a component concentration or property value
estimated by a multivariate infrared analysis is highly depen-
dent on the accuracy and precision of the reference values used
in the calibration. The expected agreement between the infra-
red estimated values and those obtained from a single reference
measurement can never exceed the repeatability of the refer-
ence method, since, even if the infrared estimated the true
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value, the measurement of agreement is limited by the preci-
sion of the reference values. Knowledge of the precision
(repeatability) of the reference method is critical in the
development of an infrared multivariate calibration. The pre-
cision of the reference data used in developing a model, and the
accuracy of the model can be improved by averaging repeated
reference measurements.

NOTE 6—If the reference values used to calibrate a multivariate infrared
analysis are generated in a single laboratory, it is essential that the
measurement process used to generate these values be monitored for bias
and precision using suitable quality assurance procedures (see for ex-
ample, Practice D 6299. If primary standards are not available to allow the
bias of the reference measurement process to be established, it is
recommended that the laboratory participate in an interlaboratory cross-
check program as a means of demonstrating accuracy.

NOTE 7—Samples like hydrocarbons from petrochemical process
streams can degrade with time unless careful sampling and sample storage
procedures are followed. It is critical that the composition of samples
taken for laboratory or at-line infrared analysis, or for laboratory mea-
surement of the reference data be representative of the process at the time
the samples are taken, and that composition is maintained during storage
and transport of the samples either to the analyzer or to the laboratory.
Sampling should be done in accordance with methods like Practices
D 1265 and D 4057, or Practice D 4177, whichever are applicable.
Whenever possible, sample storage for extended time periods is not
recommended because of the likelihood of samples degrading with time in
spite of sampling precautions taken. Degradation of samples can cause
changes in the spectra measured by the analyzer and thus in the values
estimated, and in the property or quality measured by the reference
method.

9.4 If the reference method used to obtain reference values
for the multivariate calibration is an established ASTM
method, then repeatability and reproducibility data are in-
cluded in the method. In this case, it is only necessary to
demonstrate that the reference measurement is being practiced
in accordance with the procedure described in the method, and
that the repeatability obtained is statistically comparable to that
published in the method. Data from established quality control
procedures can be used to demonstrate that the repeatability of
the reference method is within ASTM specifications. If such
data is not available, then repeatability data should be collected
on at least three of the samples that are to be used in the
calibration. These samples should be chosen to span the range
of values over which the calibration is to be developed, one
sample having a reference value in the bottom third of the
range, one sample having a value in the middle third of the
range, and one sample having a value in the upper third of the
range. At least six reference measurements should be made on
each sample. The standard deviation among the measurements
should be calculated and compared to that expected based on
the published repeatability.3

9.5 If the reference method to be used for the multivariate
calibration is an established ASTM method, and the samples to
be used in the calibration have been analyzed by a cooperative
testing program (for example, octane values obtained from
recognized exchange groups), then the reference values ob-

tained by the cooperative testing program can be used directly,
and the standard deviations established by the cooperative
testing program can be used as the estimate of the precision of
the reference data.

9.6 Reference methods that are not ASTM methods can be
used for the multivariate calibration of infrared analyses, but in
this case, it is the responsibility of the method developer to
establish the precision of the reference method using proce-
dures similar to those detailed in Practice E 691, in the Manual
for Determining Precision for ASTM Methods on Petroleum
Products and Lubricants10 and in Practice D 6300.

9.7 When multiple reference measurements are made on an
individual calibration or validation sample, a Dixon’s Test (see
A1.1) should be applied to the values to determine if all of the
reference values came from the same population, or if one or
more of the values is suspect and should be rejected.

10. Simple Procedure to Develop a Feasibility
Calibration

10.1 For new applications, it is generally not known
whether an adequate IR multivariate model can be developed.
In this case, feasibility studies can be performed to determine
if there is a relationship between the IR spectra and the
component/property of interest, and whether a model of
adequate precision could possibly be built. If the feasibility
calibration is successful, then it can be expanded and validated.
A feasibility calibration involves the following steps:

10.1.1 Approximately 30 to 50 samples are collected cov-
ering the entire range for the constituent/property of interest.
Care should be exercised to avoid intercorrelations among
major constituents unless such intercorrelations always exist in
the materials being analyzed. The range in the concentration/
property should be preferably five times, but not less than three
times, the standard deviation of the reproducibility
(reproducibility/2.77) of the reference analysis.

10.1.2 When collecting spectral data on these samples,
variations in particle size, sample presentation, and process
conditions which are expected during analysis must be repro-
duced. Multiple spectra of the same sample under different
conditions can be employed if such variations in conditions are
anticipated during analysis.

10.1.3 Reference analyses on these samples are conducted
using the accepted reference method. If the range for the
component/property is not at least five times the standard
deviation of the reproducibility for the reference analysis, then
r replicate analyses should be conducted on each sample such
that the =r times the range is preferably five times, but at least
three times, the standard deviation of the reference analysis.

10.1.4 A calibration model is developed using one or more
of the mathematical techniques described in Sections 11 and
12. The calibration model is preferably tested using cross-
validation methods such as SECV or PRESS (see 15.3.6).
Other statistics can also be used to judge the overall quality of
the calibration.

10.1.5 If the SECV value obtained from the cross validation
suggests that a model of adequate precision can be built, then
additional samples are collected to round out the calibration
set, and to serve as a validation set, spectra of these samples are

3 Manual on Determining Precision Data for ASTM Methods on Petroleum
Products and Lubricants, Available from ASTM International Headquarters. Re-
quest Research Report RR: D02-1007.
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collected, a final model is developed, and validated as de-
scribed in Sections 13, 14, and 15.

11. Data Preprocessing

11.1 Various types of data preprocessing algorithms can be
applied to the spectral data prior to the development of a
multivariate calibration model. For example, numerical deriva-
tives of the spectra may be calculated using digital filtering
algorithms to remove varying baselines. Such filtering gener-
ally causes a significant decrease in the spectral signal-to-
noise. Digital filters may also be employed to smooth data,
improving signal to noise at the expense of resolution. A
complete description of all possible preprocessing methods is
beyond the scope of these practices. For the purpose of these
practices, preprocessing of the spectral data can be used if it
produces a model which has acceptable precision and which
passes the validation test described in Section 21. In addition,
any spectral preprocessing method must be automated so as to
provide an exactly reproducible result, and must be applied
consistently to all calibration spectra, validation spectra, and to
spectra of unknowns which are to be analyzed.

11.2 One type of preprocessing requires special mention.
Mean-centering refers to a procedure in which the average of
the calibration spectra (average absorption over the calibration
spectra as a function of wavelength or frequency) is calculated
and subtracted from the spectra of the individual calibration
samples prior to the development of the model. The average
reference value among the calibration samples is also calcu-
lated, and subtracted from the individual reference values for
the calibration samples. The model is then built on the
mean-centered data. If the spectral and reference value data are
mean-centered prior to the development of the model, then:

11.2.1 When an unknown sample is analyzed, the average
spectrum for the calibration site must be subtracted from the
spectrum of the unknown prior to applying the mean-centered
model, and the average reference value for the calibration set
must be added to the estimate from the mean-centered model to
obtain the final estimate; and

11.2.2 The degrees of freedom used in calculating the
standard error of calibration must be diminished by one to
account for the degree of freedom used in calculating the
average (see 15.2).

12. Multivariate Calibration Mathematics

12.1 Multivariate mathematical techniques are used to relate
the absorbances measured for a set of calibration samples to
the reference values (property or component concentration
values) obtained for this set of samples from a reference test.
The object is to establish a multivariate calibration model that
can be applied to the spectra of future, unknown, samples to
estimate values (property or component concentration values).
Only linear multivariate techniques are described in these
practices; that is, it is assumed that the property or component
concentration values can be modeled as a linear function of the
sample absorptions. Various nonlinear multivariate techniques
have been developed, but have generally not been as widely
used as the following linear techniques. These practices are not
intended to compare or contrast among these techniques. For

the purpose of these practices, the suitability of any specific
mathematical technique should be judged only on the follow-
ing two criteria:

12.1.1 The technique should be capable of producing a
calibration model that can be validated as described in Section
18; and

12.1.2 The technique should be capable of providing statis-
tics suitable for identifying if samples being analyzed are
outside the range for which the model was developed; that is,
when the estimated values represent extrapolation of the model
(see 16.3).

NOTE 8—In the following derivations, matrices are indicated using
boldface capital letters, vectors are indicated using boldface lowercase
letters, and scalars are indicated using lowercase letters. Vectors are
column vectors, and their transposes are row vectors. Italicized lowercase
letters indicate matrix or vector dimensions.

12.1.3 All linear, multivariate techniques are designed to
solve the same generic problem. If n calibration spectra are
measured at f discrete wavelengths (or frequencies), then X, the
spectral data matrix, is defined as an f by n matrix containing
the spectra (or some function of the spectra produced by
preprocessing, as described in Section 9) as columns. Similarly
y is a vector of dimension n by 1 containing the reference
values for the calibration samples. The object of the linear,
multivariate modeling is to calculate a prediction vector p of
dimension f by 1 that solves Eq 1:

y 5 Xtp 1 e (1)

where Xt is the transpose of the matrix X obtained by
interchanging the rows and columns of X. The error vector, e,
is a vector of dimension n by 1, that is the difference between
the reference values y and their estimates, ŷ,
where:

ŷ 5 Xtp (2)

12.1.4 The estimation of the prediction vector p is generally
calculated so as to minimize the sum of squares of the errors,

ete 5 ?? e2 ?? 5 ~y – Xtp!t~y – Xtp! (3)

Since X is generally not a square matrix, it cannot be directly
inverted to solve Eq 3. Instead, the pseudo or generalized
inverse of X, X+, is calculated as:

X1y 5 ~XXt!21Xy 5 p (4)

where p is the least square estimate of the prediction vector p.
It should be noted that, in applying Eq 1-4, it is assumed that
the errors in the spectral data in X are negligible compared to
the errors in the reference data, and that there is a linear
relationship between the component concentration or property
and the spectral data. If either of these assumptions is incorrect,
then the linear models derived here will not yield an optimal
estimate of p.

12.1.5 In calculating the least square solution in Eq 4, it is
assumed that the individual error values in e (see Eq 1) are
normally distributed with common variance. This will be true
if each of the individual reference values in y represents the
result of a single reference measurement, and if the repeatabil-
ity of the reference method is constant over the range of values
in y. If the values in y represent averages of more than one
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reference method determination, then the least square expres-
sion in Eq 4 is not applicable. If ri reference values yi1, yi2, yi3,
. . . yir are measured for calibration sample i, then a weighted
regression can be employed. If R is a diagonal matrix of
dimension n by n containing the rivalues for each of the
calibration samples, then the weighted regression is given by:

=R ȳ 5 =RXtp 1 e (5)

~XRXt!21XRȳ 5 p (6)

where =R indicates the diagonal matrix containing the square
roots of the rivalues, and ȳ is the vector containing the averages
of the ri reference values for each sample. If averages of
multiple reference values are used in y and a weighted
regression is used, special care must be taken to add back the
variance removed by calculating the average reference values
(see Section 11) so that the statistics for the model can be
compared to those for a single reference value determination.
The specific method in which the weighting is applied depends
on the specific multivariate mathematics that are employed.

12.1.6 For most cases, if the calibration spectra are collected
over an extended wavelength (or frequency) range, the number
of individual absorption values per spectrum, f, will exceed the
number of calibration spectra, n. In this case, the matrices
(XXt) and (XRXt) are rank deficient and cannot be directly
inverted. Even in cases where f < n, colinearity among the
calibration spectra can cause (XXt) and (XRXt) to be nearly
singular (to have a determinant that is near zero), and the direct
use of Eq 4 and Eq 6 can produce an unstable model, that is,
a model for which changes on the order of the spectral noise
level produce significant changes in the estimated values. In
order to solve Eq 4 and Eq 6, it is therefore necessary to reduce
the dimensionality of X so that a stable inverse can be
calculated. The various linear, mathematical techniques used
for multivariate calibration are different means of reducing the
dimensionality of X so as to be able to calculate stable inverses
of (XXt) and (XRXt) and the estimate p.

12.2 Multilinear Regression Analysis:
12.2.1 In multilinear regression (MLR), a specific number

of wavelengths (or frequencies), k, are chosen such that k << n.
A new matrix M of dimension k by n is obtained from X by
extracting the columns from X that correspond to the selected
wavelengths (or frequencies). The calibration equation then
becomes:

y 5 Mtb 1 e (7)

where b is a vector of dimension k by 1 containing the set of
regression coefficients defined at each of the chosen wave-
lengths (or frequencies). The solution for the regression coef-
ficients is obtained as:

~MMt!21My 5 b (8)

The estimate of the full prediction vector, p, is obtained from
b by substituting the values from binto the corresponding
positions in p(corresponding to the selected wavelengths or
frequencies), and setting all other elements of p (corresponding
to the wavelengths or frequencies that were eliminated in going
from X to M) to zero.

12.2.2 If a weighted regression is used, the corresponding
form for Eq 8 becomes:

~MRMt!21MRy 5 b (9)

12.2.3 Not all commercial software packages that imple-
ment MLR include options for weighted regressions. If MLR
models are developed with such packages, averages of multiple
reference values should still be included in the y vector if they
are available. The use of the average values will lead to better
estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of
calibration calculated by the software will generally not be
meaningful in these cases since they are not expressed relative
to a single reference measurement. Standard errors of calibra-
tion should be recalculated using the procedure described in
Section 11.

12.2.4 The choice of the number of wavelengths (or fre-
quencies), k, to use in multilinear regression is a critical factor
in the model development. If too few wavelengths are used, a
less precise model will be developed. If too many wavelengths
are used, colinearity among the absorption values at these
wavelengths may lead to an unstable model. The optimum
number of wavelengths (or frequencies) for a model is related
to the number of spectrally distinguishable components in the
calibration spectra (see Section 15) and can generally only be
determined by trial and error. As a rule, the number of
wavelengths (or frequencies) used must be large enough to
produce a model with the desired precision, but small enough
to produce a stable model that passes validation.

12.2.5 The choice of specific wavelengths (or frequencies)
to include in a multilinear regression model is also a critical
factor in the model development. Several mathematical algo-
rithms have been suggested for making this selection (6, 7, 8,
9). Alternatively, selection may be based on prior knowledge of
a relationship between the absorptions measured and the
property or component being modeled. It is beyond the scope
of these practices to compare alternative selection methods. An
adequate set of wavelengths (or frequencies) will, for the
purpose of these practices, be defined as a set that produces a
model with the desired precision that passes the validation test
procedure described in Section 18.

12.3 Principal Components Regression (PCR):
12.3.1 Principal components regression (PCR) is based on

the singular value decomposition of the spectral data matrix.
The singular value decomposition takes the form:

X 5 L(St (10)

12.3.1.1 The scores matrix, S, is a n by n matrix that
satisfies the relationship:

StS 5 I (11)

St~XtX!S 5 L (12)

where I is a n by n identity matrix, and L is the matrix of
eigenvalues of XtX. The n by n matrix ( is the matrix of
singular values, that are the square roots of the eigenvalues,
that is:

(
2 5 L (13)
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12.3.1.2 The loadings matrix, L, is a f by n matrix that
satisfies the relationships:

LtL 5 I (14)

Lt ~XXt!L 5 L (15)

12.3.1.3 The row vectors that make up the matrices S and L
are orthonormal, that is, the dot product of the vector with itself
is 1, and the dot product with any other vector in the matrix is
0.

NOTE 9—In some implementations of PCR, the data matrix X may be
decomposed as the product of only two matrices, S and L. Either S or L
is then orthogonal but not orthonormal, and either StS = L or LtL = L.

12.3.1.4 Using the singular value decomposition, the
pseudo inverse of the matrix X can be calculated as:

X1 5 S(21Lt (16)

12.3.1.5 Using the pseudo inverse relationship in Eq 16, it is
then possible to solve for the prediction vector p. In practice,
however, the full inverse of X as given in Eq 16 is not used,
since it contains information relating to the spectral noise in the
calibration spectra.

12.3.2 When a principal components analysis is conducted
on a matrix X containing the calibration spectra, the signals
arising from the absorbances of the calibration sample compo-
nents generally account for the majority of the variance in X,
and are concentrated into the first k loading vectors, that
correspond to the larger eigenvalues. While the separation of
signal and noise is seldom perfect, it is preferable to use only
the first k vectors in building a model. The singular value
decomposition of X is then written as:

X 5 La(aSa
t 1 Ln(nSn

t (17)

where Sa is a n by k matrix containing the first k columns of S,
La is a f by k matrix containing the first k columns of L, Sa is
a k by k diagonal matrix containing the first k singular values,
and Sn, Sn, and Ln are the corresponding matrices containing
the last n-k elements of S, L, and S. The pseudo inverse of X
is then approximated as:

X1 5 Sa(a
21La

t (18)

12.3.2.1 The estimate for the prediction vector, p, is then
given as:

p 5 La(a
21Sa

t y (19)

12.3.2.2 Alternatively, the scores, S, may be regressed
against the reference values, y, to obtain a set of regression
coefficients, b:

y 5 Sab 1 e (20)

b 5 ~Sa
t Sa!

21Sa
t y 5 Sa

t y (21)

12.3.2.3 Various stepwise regression algorithms (10, 11, 12)
may be used to test which of the principal components (which
columns in the scores matrix, S) show a statistically significant
correlation to the reference values in y. Coefficients (elements
of b) for principal components that do not show a statistically
significant correlation may be set to zero. The estimate for the
prediction vector then becomes:

p 5 LaSa
21 b (22)

12.3.3 If the average of multiple reference measurements is
used in the y vector, then a weighted regression should be used
in calculating the prediction vector. The weighting is prefer-
ably applied to the scores in Eq 20 and Eq 21, and the spectra
in X are not weighted prior to the singular value decomposi-
tion.

12.3.3.1 If ri individual reference values are measured for
the ith calibration sample, then entering ri copies of the
spectrum xi into the X matrix, or weighting the spectrum xi by
=ri will alter the loadings that are calculated. If the spectrum
xi is only measured once, the uncertainty in the spectral
variables contributed by xi is no different from that for the other
n − 1 spectra. Weighting the spectrum xi prior to the singular
value decomposition will tend to force noise characteristics of
xi into the loadings, adversely affecting the model. Weighting
the scores during the calculation of the regression coefficients
will properly account for the differences in the variance among
the components of the ȳ vector. The weighted regression
equations become:

=R ȳ 5 =RSab 1 e (23)

b 5 ~Sa
t RSa!

21RSa
t ȳ (24)

12.3.4 Not all commercial software packages that imple-
ment PCR include options for weighted regressions. If PCR
models are developed with such packages, averages of multiple
reference values should still be included in the y vector if they
are available. The use of the average values will lead to better
estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of
calibration calculated by the software will generally not be
meaningful in these cases since they are not expressed relative
to a single reference measurement. Standard errors of calibra-
tion should be recalculated using the procedure described in
15.1.

12.3.5 As with wavelengths in multilinear regression, the
choice of the number of principal components, k, to use in the
regression is a critical factor in the model development. If too
few principal components are used, a less precise model will be
developed. If too many principal components are used, noise
characteristics of the calibration samples will be incorporated
into the model leading to unstable estimations. The optimum
number of principal components for a model is related to the
number of spectrally distinguishable components in the cali-
bration spectra (see Section 15), and can generally only be
determined by trial and error. As a rule, the number of principal
components used must be large enough to produce a model
with the desired precision, but small enough to produce a stable
model that passes validation.

12.4 Partial Least Squares (PLS):

NOTE 10—The term PLS has been used to describe various mathemati-
cal algorithms. The version described here is a specific representation of
the PLS-1 algorithm, and deals with only one set of reference values at a
time. PLS-2 or multiblock PLS algorithms exist that can be used for the
simultaneous calibration of multiple components or concentrations, or
both, but these algorithms are less well established than PLS-1 and are not
included in these practices. Various descriptions of the PLS-1 algorithm
have been published (13, 14, 15, 16, 17, 18, 19, 20) many of which differ
slightly in the actual computational steps. In implementing the PLS-1
algorithm, a choice must be made as to which, if either, of the scores or
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loadings vectors are to be normalized. In the following derivation, the
scores vectors were normalized. If neither vector is normalized, or if the
loadings vector is normalized instead of the scores vector, a different
expression will be obtained for the prediction vector. Differences in the
derivations should not result in differences in the numerical values
obtained for the prediction vector, nor in estimates based on it.

12.4.1 Like PCR, PLS involves the decomposition of the
spectral data matrix, X, into the product of matrices. Unlike
PCR where X is first decomposed, and then regressed versus
the reference values, in PLS, the y vector is used in obtaining
the decomposition of X. The PLS proceeds by means of a
series of steps, which are repeated in a loop. Each time the
steps are repeated, a weighting vector wi (of dimension f by 1),
a scores vector si (of dimension n by 1), a regression coefficient
bi (a scalar), and a loadings vector li (of dimension f by 1) are
calculated. The subscript i indicates the number of times the
entire loop has been executed, and is initially 1.

12.4.1.1 Step 1—Calculation of a weighting vector of di-
mension f by 1, wi:

Xt 5 ywi
t 1 Z (25)

ŵi 5 Xy (26)

12.4.1.2 Step 2—Scaling the weight vector ŵi and calcula-
tion of a normalized scores vector, si, of dimension n by 1:

Xt 5 si ŵi
t 1 Z (27)

ŝ 5 Xt ŵi (28)

ŵi 5 ŵi/~ ŝt ŝ! (29)

ŝi 5 ŝ/~ ŝt ŝ! (30)

12.4.1.3 Step 3—Regressing the scores vector against the
reference values to obtain a regression coefficient, bi:

y 5 ŝibi 1 e (31)

bi 5 ŝi
ty (32)

12.4.1.4 Step 4—Calculation of a loading vector, li of
dimension f by 1:

X 5 li ŝi
t 1 Z (33)

li 5 Xŝi (34)

12.4.1.5 Step 5—Calculation of the residuals:

Zi 5 X 2 liŝi
t (35)

ei 5 y 2 biŝi (36)

12.4.1.6 For subsequent times through the loop, the matrix
X is replaced with the residuals matrix Zi–1 from the previous
loop, and the y vector is replaced with the residuals vector ei–1.
The loop is repeated k times to obtain k weighting, scores, and
loading vectors, and k regression coefficients. The overall
expression for the results is then:

X 5 LSt 1 Z (37)

y 5 Sb 1 e (38)

where S is the n by k matrix containing the ŝi as rows, L is the
f by k matrix containing the li as individual rows, Z is the
residual from the spectral data matrix, and e is the residual
from the estimation of the reference values. The estimate of the
prediction vector is then given by:

p 5 L~LtL!21b (39)

12.4.2 If the values in the vector ȳ contain the average of
multiple reference measurements, then a weighted regression
should be employed in developing the model. Unfortunately,
for PLS, development of an appropriate weighting scheme is
complicated by the use of y in the decomposition of X. If the
spectrum xi corresponds to a sample for which xi reference
values are measured, then weighting both X and y by =R in
Step 1 of the PLS algorithm will over emphasize the spectral
variables contributed by xi. Preferably, weighting is done only
in the calculation of the regression coefficients in Step 3. Eq
31and Eq 32 then become:

=R ȳ 5 =Rŝibi 1 e (40)

bi 5 ~ŝi
tRŝi!

21ŝi
tR ȳ (41)

12.4.2.1 The other steps in the algorithm proceed un-
changed.

12.4.3 Not all commercial software packages that imple-
ment PLS include options for weighted regressions. If PLS
models are developed with such packages, averages of multiple
reference values should still be included in the ȳ vector if they
are available. The use of the average values will lead to better
estimates of the regression coefficients, but the model produced
will not be the least squares minimum. Standard errors of
calibration calculated by the software will generally not be
meaningful in these cases since they are not expressed relative
to a single reference measurement. Standard errors of calibra-
tion should be recalculated using the procedure described in
15.2.

13. Estimation of Values from Spectra

13.1 If x (an f by 1 vector) is the spectrum of a sample, then
ŷ (a scalar), the estimated component concentration or property
value, is given by:

ŷ 5 xt p (42)

where p is the prediction vector obtained from the multivariate
calibration. The expression in Eq 42 involves only the dot
product of two vectors to obtain the estimated value; it has the
advantage of being computationally simple. However, alterna-
tive computations are often employed in obtaining ŷ, since they
provide additional parameters required to calculate the uncer-
tainty in the estimation as well as whether or not the estimation
is being made by interpolation or extrapolation of the calibra-
tion model.

13.2 Estimations by MLR—For MLR, the absorbance val-
ues in x that correspond to the wavelengths (or frequencies)
chosen in the calibration are extracted to form a vector m (of
dimension k by 1). The estimate ŷ is then obtained as the dot
product of the vector m with the vector of regression coeffi-
cients, b:

ŷ 5 mt b (43)

13.3 Estimations by PCR:
13.3.1 For PCR, the vector x is first decomposed:

xt 5 st(Lt (44)

ŝt 5 xtL(21 (45)
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