МЕЖДУНАРОДНЫЙ СТАНДАРТ

ISO 3976

IDF 74

Второе издание 2006-03-01

Жир молочный. Определение пероксидного числа

Milk fat — Determination of peroxide value

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3976:2006

https://standards.iteh.ai/catalog/standards/sist/074d899e-0844-4710-937f-19e7ced4dd37/iso-3976-2006

Ответственность за подготовку русской версии несёт ГОST R (Российская Федерация) в соответствии со статьёй 18.1 Устава ISO

Ссылочные номера ISO 3976:2006(R) IDF 74:2006(R)

Отказ от ответственности при работе в PDF

Настоящий файл PDF может содержать интегрированные шрифты. В соответствии с условиями лицензирования, принятыми фирмой Adobe, этот файл можно распечатать или смотреть на экране, но его нельзя изменить, пока не будет получена лицензия на интегрированные шрифты и они не будут установлены на компьютере, на котором ведется редактирование. В случае загрузки настоящего файла заинтересованные стороны принимают на себя ответственность за соблюдение лицензионных условий фирмы Adobe. Центральный секретариат ISO не несет никакой ответственности в этом отношении

Adobe - торговый знак фирмы Adobe Systems Incorporated.

Подробности, относящиеся к программным продуктам, использованные для создания настоящего файла PDF, можно найти в рубрике General Info файла; параметры создания PDF были оптимизированы для печати. Были приняты во внимание все меры предосторожности с тем, чтобы обеспечить пригодность настоящего файла для использования комитетами-членами ISO. В редких случаях возникновения проблемы, связанной со сказанным выше, просьба проинформировать Центральный секретариат по адресу, приведенному ниже.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3976:2006 https://standards.iteh.ai/catalog/standards/sist/074d899e-0844-4710-937f-

ДОКУМЕНТ ЗАЩИЩЕН АВТОРСКИМ ПРАВОМ

© ISO 2006

Все права сохраняются. Если не указано иное, никакую часть настоящей публикации нельзя копировать или использовать в какой-либо форме или каким-либо электронным или механическим способом, включая фотокопии и микрофильмы, без предварительного письменного согласия ISO, которое должно быть получено после запроса о разрешении, направленного по адресу, приведенному ниже, или в комитет-член ISO в стране запрашивающей стороны.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Опубликовано в Швейцарии

International Dairy Federation
Diamant Building • Boulevard Auguste Reyers 80 • B-1030 Brussels

Tel. + 32 2 733 98 88 Fax + 32 2 733 04 13 E-mail info@fil-idf.org Web www.fil-idf.org

Содержание

Страница

Преди	ІСЛОВИЕ	iv
1	Область распространения	1
2	Термины и определения	1
3	Принцип	1
4	Реактивы	2
5	Аппаратура	3
6	Отбор проб	4
7 7.1 7.2	Подготовка пробы для испытанияОбщие положения	4
7.2 7.3	Обезвоженный молочный жир, обезвоженное топленое масло, топленое масло, ги	
8 8.1 8.2 8.3 8.4	Методика (см. Приложение А)	4 5 6
9 9.1 9.2	Расчет и выражение результатов Расчет Выражение результатов испытания	7
10 10.1 10.2 10.3	птря://standards.iten.ai/catalog/standards/sist/U /4d899e-U844-4 / 1U-93 / 1- Прецизионность Межлабораторное испытание Повторяемость Воспроизводимость	8 8
11	Протокол испытания	9
Прило	Приложение A (информативное) Схема методики и примеры расчетов	
Прило	Приложение В (информативное) Межлабораторное испытание	
Прило	Приложение C (информативное) Сравнительное испытание	
	Бибпиография	

Предисловие

ISO (Международная организация по стандартизации) является всемирной федерацией национальных организаций по стандартизации (комитетов-членов ISO). Разработка международных стандартов обычно осуществляется техническими комитетами ISO. Каждый комитет-член ISO, заинтересованный в деятельности, для которой был создан технический комитет, имеет право быть представленным в этом комитете. Международные организации, правительственные и неправительственные, имеющие связи с ISO, также принимают участие в работах. ISO непосредственно сотрудничает с Международной электротехнической комиссией (IEC) по всем вопросам электротехнической стандартизации.

Международные стандарты разрабатываются в соответствии с правилами, приведенными в Директивах ISO/IEC, Часть 2.

Основная задача технических комитетов состоит в подготовке международных стандартов. Проекты международных стандартов, одобренные техническими комитетами, рассылаются комитетам-членам на голосование. Их опубликование в качестве международных стандартов требует одобрения, по меньшей мере, 75 % комитетов-членов, принимающих участие в голосовании.

Следует иметь в виду, что некоторые элементы настоящего документа могут быть объектом патентных прав. ISO не должен нести ответственность за идентификацию какого-либо одного или всех патентных прав.

ISO 3976 IDF 74 разработан Техническим комитетом ISO/TC 34, *Пищевые продукты*, Подкомитетом SC 5, *Молоко и молочные продукты*, и Международной федерацией молочной промышленности (IDF). Этот стандарт должен быть опубликован совместно ISO и IDF.

Настоящее издание ISO 3976 IDF 74 отменяет и заменяет ISO 3976:1977, который был подвергнут техническому пересмотру. Сравнение результатов, полученных при использовании нового реактива (смесь метанол/1-деканол/*н*-гексан), с результатами, полученными при использовании смеси хлороформ/метанол, приводится в Приложении С.

ISO 3976:2006(R) IDF 74:2006(R)

Предисловие

Международная федерация молочной промышленности (IDF) является всемирной федерацией предприятий молочной отрасли, каждый член которой представлен в ней своим национальным комитетом. Каждый национальный комитет имеет право быть представленным в Постоянных комитетах IDF, осуществляющих техническую работу. IDF сотрудничает с ISO по вопросам разработки стандартных методов анализа и отбора проб молока и молочных продуктов.

Проекты международных стандартов, принятые Рабочими группами и Постоянными комитетами, рассылаются национальным комитетам для голосования. Их опубликование в качестве международных стандартов требует одобрения не менее 50 % национальных комитетов IDF, принимающих участие в голосовании.

Следует иметь в виду, что некоторые элементы настоящего документа могут быть объектом патентных прав. IDF не должен нести ответственность за идентификацию какого-либо одного или всех патентных прав.

ISO 3976 IDF 74 подготовлен Международной федерацией молочной промышленности (IDF) и Техническим комитетом ISO/TC 34, *Пищевые продукты*, Подкомитетом SC 5, *Молоко и молочные продукты*. Этот стандарт должен быть опубликован совместно IDF и ISO.

Вся работа была проведена совместной Рабочей группой ISO-IDF по *Жирам*, Постоянного комитета по *Основным компонентам молока*, под руководством руководителя проекта м-ра А. ван Резеля (Бельгия).

Настоящее издание ISO 3976 IDF 74 отменяет и заменяет IDF 74A:1991, который был подвергнут техническому пересмотру. Сравнение результатов, полученных при использовании нового реактива (смесь метанол/1-деканол/*н*-гексан), с результатами, полученными при использовании смеси хлороформ/метанол, приводится в Приложении С.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3976:2006 https://standards.iteh.ai/catalog/standards/sist/074d899e-0844-4710-937f-

Жир молочный. Определение пероксидного числа

ПРЕДОСТЕРЕЖЕНИЕ — Применение настоящего международного стандарта может включать использование опасных материалов, операций и оборудования. В этом стандарте не ставится цель решить все проблемы безопасности, связанные с его применением. Пользователь этого стандарта сам несет ответственность за обеспечение безопасности и охрану здоровья, а также определение применимости местных регламентных ограничений до его использования.

1 Область применения

Настоящий международный стандарт устанавливает метод определения пероксидного числа в обезвоженном молочном жире.

Метод применим к обезвоженному молочному жиру с пероксидным числом до 1,3 ммоль кислорода на килограмм.

ПРИМЕЧАНИЕ Для проб молочного жира с пероксидным числом от 0,5 ммоль до 1,3 ммоль кислорода на килограмм используется обобщенная методика (см. Приложение A). Для проб молочного жира с пероксидным числом более 1,3 ммоль кислорода на килограмм может быть использован метод с применением йода/тиосульфата (например, AOAC 920.160).

2 Термины и определения **1503**

https://standards.iteh.ai/catalog/standards/sist/074d899e-0844-4710-937f-

Применительно к настоящему документу используются следующие термины и определения.

2.1

пероксидное число peroxide value

количество вещества, определенное по методике, установленной в этом международном стандарте

ПРИМЕЧАНИЕ Пероксидное число выражают в миллимолях кислорода на килограмм.

3 Принцип

Пробу для анализа растворяют в смеси метанол/1-деканол/*н*-гексан, затем добавляют хлорид железа(II) и тиоцианат аммония. Пероксиды окисляют железо(II), которое образует комплексное соединение железо(III) красного цвета с тиоцианатом аммония. Количество вещества рассчитывают по результатам фотометрического определения комплексного соединения железа(III) красного цвета после заданного периода реакции.

4 Реактивы

Используют реактивы только признанного аналитического качества, если не установлено иначе, и дистиллированную или деминерализованную воду или воду, по меньшей мере, эквивалентной чистоты.

4.1 Смесь метанол/1-деканол/*н*-гексан, в соотношении 3:2:1 (объемная доля).

Смешивают 2 объемные части 1-деканола с 1 объемной частью *н*-гексана. Добавляют 3 объемные части безводного метанола к этой смеси и снова перемешивают.

Смесь огнеопасна и имеет неприятный запах. Поэтому, рекомендуется работать в вытяжном шкафу и перчатках.

Вместо H-гексана может использоваться петролейный эфир с температурными пределами кипения от 60 °C до 80 °C.

4.2 Раствор хлорида железа(II) (FeCl₂), $c(Fe^{2+}) \sim 1$ мг/мл.

Готовят раствор хлорида железа(II) при непрямом рассеянном свете.

Растворяют приблизительно 0,4 г дигидрата хлорида бария (BaCl $_2$ ·2H $_2$ O) примерно в 50 мл воды. Затем растворяют приблизительно 0,5 г гептагидрата сульфата железа(II) (FeSO $_4$ ·7H $_2$ O) примерно в 50 мл воды. В раствор сульфата железа(II) медленно вливают раствор хлорида бария при постоянном перемешивании. Добавляют приблизительно 2 мл раствора соляной кислоты I (4.5) и снова перемешивают.

Дают возможность осадку сульфата бария отстаиваться или центрифугируют смесь до образования прозрачного верхнего слоя жидкости. Декантируют полученный таким образом прозрачный раствор в склянку из темного стекла. Не хранят раствор более 1 недели.

Альтернативно, можно приготовить раствор хлорида железа(II) путем растворения приблизительно 0,35 г тетрагидрата хлорида железа(II) ($FeCl_2 \cdot 4H_2O$) примерно в 100 мл воды. Добавляют 2 мл раствора соляной кислоты I (4.5) и перемешивают.

4.3 Раствор тиоцианата аммония.

Растворяют приблизительно 30 г тиоцианата аммония (NH_4SCN) в воде. Разбавляют водой до 100 мл. Если раствор не бесцветный, промывают его несколько раз небольшими порциями (например, по 5 мл) изоамилового спирта (3-метилбутан-1-ол).

4.4 Стандартный раствор хлорида железа(III) (FeCl₃), c(Fe) = 10 мкг/мл.

В мерной колбе с одной меткой вместимостью 500 мл растворяют 0,500 г порошка железа примерно в 50 мл раствора соляной кислоты I (4.5). Добавляют 1 - 2 мл раствора пероксида водорода (4.7). Удаляют избыток пероксида водорода при кипении в течение 5 мин. Охлаждают до комнатной температуры. Разбавляют водой до метки 500 мл и перемешивают.

Раствор хлорида железа(III), содержащий 1 г/л Fe, также может быть приготовлен из стандартизованных химикатов, имеющихся в продаже.

С помощью пипетки переносят 1 мл полученного раствора в мерную колбу с одной меткой вместимостью 100 мл. Разбавляют до метки 100 мл смесью метанол/1-деканол/*н*-гексан (4.1) и перемешивают.

- **4.5** Раствор соляной кислоты I, приблизительно c(HCI) = 10 моль/л.
- **4.6** Раствор соляной кислоты II, приблизительно c(HCI) = 0.2 моль/л.

Разбавляют 2 мл раствора соляной кислоты I (4.5) водой до 100 мл.

- **4.7** Раствор пероксида водорода (H₂O₂), массовая доля приблизительно 30 %.
- **4.8** Разбавленная азотная кислота (HNO₃), массовая доля приблизительно 10 %.

5 Аппаратура

Используют обычную лабораторную аппаратуру и, в частности, следующую.

5.1 Стеклянная посуда.

Очищают всю стеклянную посуду путем замачивания в разбавленной азотной кислоте (4.8) в течение 24 ч. Промывают стеклянную посуду четыре раза водопроводной водой и четыре раза дистиллированной водой или водой эквивалентной чистоты перед сушкой в сушильном шкафу (5.10), установленном на температуру 100 °C, в течение 1 ч.

Чистота стеклянной посуды имеет наибольшее значение. Также могут быть использованы другие процедуры очистки, если они дают такой же результат.

- **5.2 Аналитические весы**, способные взвешивать с точностью до 1 мг при возможности считывания показаний до 0,1 мг.
- **5.3 Раздаточное устройство**, способное подавать точно 9,9 мл, 9,6 мл, 9,4 мл, 8,9 мл, 8,4 мл и 7,9 мл смеси метанол/1-деканол/*н*-гексан (4.1).
- **5.4 Раздаточное устройство**, способное подавать точно 0,5 мл, 1,0 мл, 1,5 мл и 2,0 мл стандартного раствора хлорида железа(III) (4.4).
- **5.5 Микропипетки**, способные подавать точно 0,05 мл раствора тиоцианата аммония (4.3), раствора хлорида железа(II) (4.2) и раствора соляной кислоты II (4.6) соответственно.
- **5.6 Фотометр**, способный измерять на длине волны около 500 нм.
- **5.7 Кюветы с крышками**, пригодные для фотометра (5.6) и устойчивые ко всем реактивам, используемым в данной методике.
- 5.8 Стеклянные пробирки, снабженные стеклянными притертыми пробками.
- **5.9 Сушильный шкаф**, с электрическим нагревом, способный работать при температуре между 40 °C и 45 °C.
- **5.10 Сушильный шкаф**, с электрическим нагревом, способный работать при температуре 100 °C \pm 2 °C.
- **5.11 Центрифуга**, способная создавать радиальное ускорение, по меньшей мере, $350 \ g$, с качающимся ротором (например, так называемая центрифуга Гербера).
- 5.12 Пробирки для центрифугирования, пригодные для центрифуги (5.11).

ISO 3976:2006(R) IDF 74:2006(R)

- 5.13 Стеклянные воронки, со складчатым бумажным фильтром (средний сорт).
- 5.14 Склянки, пригодные для использования с реактивами.

6 Отбор проб

В лабораторию следует поставлять представительную пробу. Она не должна подвергаться порче или изменению во время транспортировки или хранения.

Отбор проб не включен в метод, установленный в этом международном стандарте. Рекомендуемый метод отбора проб приводится в ISO 707 IDF 50.

7 Подготовка пробы для испытания

7.1 Общие положения

Выполняют все приготовления при непрямом рассеянном свете.

7.2 Обезвоженный молочный жир, обезвоженное топленое масло, топленое масло, ги

При необходимости полностью растапливают пробу для испытания (см. подробности в IDF 68A) путем нагревания закрытого контейнера при наименьшей температуре, необходимой для достижения расплавления. Перемешивают расплавленную пробу, не допуская, насколько это возможно, попадания в нее воздуха.

Сразу же проводят определение, пока проба для испытания находится в жидком состоянии.

7.3 Сливочное масло

Добавляют соответствующее количество пробы для испытания в пробирку для центрифугирования (5.12). Расплавляют пробу в сушильном шкафу (5.9), отрегулированном на температуру от 40 °C до 45 °C. Отделяют жир путем центрифугирования при радиальном ускорении, по меньшей мере, 350 g в течение 5 мин.

Фильтруют теплую отделившуюся жировую фракцию масла через стеклянную воронку (5.13) со складчатым сухим бумажным фильтром в сушильном шкафу (5.9), отрегулированном на температуру от 40 °C до 45 °C. Отфильтрованная жировая фракция масла должна быть прозрачной и свободной от воды и обезжиренных веществ.

Сразу же проводят определение, пока проба для испытания находится в жидком состоянии.

8 Методика (см. Приложение A)

8.1 Меры предосторожности против окисления и помех при регистрации экстинкции

- **8.1.1** Избегают какого-либо воздействия света на пробу для испытания. Выполняют испытание при непрямом приглушенном, насколько это осуществимо, свете.
- **8.1.2** Выполняют все измерения экстинкции при длине волны максимальной экстинкции комплексного соединения железа (III) красного цвета, т.е. около 500 нм.

8.1.3 Выполняют все измерения экстинкции в кюветах (5.7), которые после заполнения сразу же закрываются. После закрытия кювет дают им возможность постоять в течение 10 мин для достижения равновесия в смеси перед регистрацией экстинкции.

ПРИМЕЧАНИЕ Испарение растворителя может вызывать конденсацию наверху стенок кюветы. При восстановлении объема жидкости эта конденсация создает дифракцию света на различных слоях растворителя, что приводит к флуктуации экстинкции. Время ожидания в течение 10 мин необходимо для достижения равновесия между растворителем и паровой фазой.

8.2 Контрольный опыт на реактивы

- **8.2.1** С помощью раздаточного устройства (5.3) добавляют 9,90 мл смеси метанол/1-деканол/*н*-гексан (4.1) в пробирку (5.8).
- **8.2.2** С помощью микропипетки (5.5) добавляют 0,05 мл раствора тиоцианата аммония (4.3) к смеси в пробирке и перемешивают.
- **8.2.3** С помощью микропипетки (5.5) добавляют 0,05 мл раствора хлорида железа(II) (4.2) к смеси в пробирке и снова перемешивают.
- **8.2.4** Переносят полученную смесь для контрольного опыта на реактивы в кювету фотометра (5.7). Закрывают кювету крышкой и дают ей возможность постоять в течение 10 мин для достижения равновесия в смеси.

Измеряют экстинкцию, E_1 , смеси для контрольного опыта на реактивы относительно смеси метанол/1-деканол/h-гексан (4.1). Выполняют определение смеси для контрольного опыта на реактивы, по меньшей мере, четыре раза.

8.2.5 Полученные результаты (E_1) должны находиться в пределах диапазона 0,010 единиц. Среднее значение экстинкции смеси для контрольного опыта на реактивы ($E_{\rm m}$) должно не превышать 0,030 единиц. Если указанное выше требование не выполняется, проверяют фотометрическую методику, стеклянную посуду и все реактивы. Корректируют методику или заменяют то, что необходимо.

8.3 Контрольный опыт на пробу для испытания

- **8.3.1** Взвешивают с точностью до 1 мг в пробирке (5.8) приблизительно 0,33 г приготовленной пробы для испытания (см. 7.2 или 7.3).
- **8.3.2** С помощью раздаточного устройства (5.3) добавляют без задержки 9,60 мл смеси метанол/1-деканол/*н*-гексан (4.1) к пробе для испытания в пробирке. Осторожно перемешивают для растворения пробы жира.
- **8.3.3** С помощью микропипетки (5.5) добавляют 0,05 мл раствора тиоцианата аммония (4.3) и перемешивают.
- **8.3.4** Переносят полученную смесь для контрольного опыта на пробу для испытания в кювету фотометра (5.7). Закрывают кювету крышкой и дают ей возможность постоять в течение 10 мин для достижения равновесия в смеси. Измеряют экстинкцию (E'_0) смеси для контрольного опыта на пробу для испытания относительно смеси метанол/1-деканол/H-гексан (4.1).
- **8.3.5** В значение экстинкции смеси для контрольного опыта на пробу для испытания (E'_0) , полученное в 8.3.4, вносят поправку на разность масс проб для анализа при контрольном опыте на пробу для испытания и при самом испытании, используя следующее уравнение:

$$E_0 = E'_0 \times \frac{m}{m_0}$$