Designation: D 2241-00

Standard Specification for Poly(Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series) ${ }^{1}$

Abstract

This standard is issued under the fixed designation D 2241; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification covers poly(vinyl chloride) (PVC) pipe made in standard thermoplastic pipe dimension ratios and pressure rated for water (see appendix). Included are criteria for classifying PVC plastic pipe materials and PVC plastic pipe, a system of nomenclature for PVC plastic pipe, and requirements and test methods for materials, workmanship, dimensions, sustained pressure, burst pressure, flattening, and extrusion quality. Methods of marking are also given.
1.2 The products covered by this specification are intended for use with the distribution of pressurized liquids only, which are chemically compatible with the piping materials. Due to inherent hazards associated with testing components and systems with compressed air or other compressed gases some manufacturers do not allow pneumatic testing of their products. Consult with specific product/component manufacturers for their specific testing procedures prior to pneumatic testing.

Note 1—Pressurized (compressed) air or other compressed gases contain large amounts of stored energy which present serious saftey hazards should a system fail for any reason.
1.3 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.
1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
1.5 The following safety hazards caveat pertains only to the test methods portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. A specific precautionary statement is given in Note 7.

[^0]Note 2-CPVC plastic pipe (SDR-PR), which was formerly included in this specification, is now covered by Specification F 442.
Note 3-The sustained and burst pressure test requirements, and the pressure ratings in the appendix, are calculated from stress values obtained from tests made on pipe 4 in . (100 mm) and smaller. However, tests conducted on pipe as large as 24 in . (600 mm) in diameter have shown these stress values to be valid for larger diameter PVC pipe.
Note 4-PVC pipe made to this specification is often belled for use as line pipe. For details of the solvent cement bell, see Specification D 2672 and for details of belled elastomeric joints, see Specifications D 3139 and D 3212 .

2. Referenced Documents

2.1 ASTM Standards.

D 618 Practice for Conditioning Plastics and Electrical Insulating Materials for Testing ${ }^{2}$
D 1598 Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure ${ }^{3}$
D 1599 Test Method for Short-Time Hydraulic Failure Pressure of Plastic Pipe, Tubing, and Fittings ${ }^{3}$
D 1600 Terminology for Abbreviated Terms Relating to Plastics ${ }^{3}$
D 1784 Specification for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds ${ }^{2}$
D 2122 Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings ${ }^{3}$
D 2152 Test Method for Adequacy of Fusion of Extruded Poly(Vinyl Chloride) (PVC) Pipe and Molded Fittings by Acetone Immersion ${ }^{3}$
D 2444 Test Method for Impact Resistance of Thermoplastic Pipe and Fittings by Means of a Tup (Falling Weight) ${ }^{3}$
D 2672 Specification for Joints for IPS PVC Pipe Using Solvent Cement ${ }^{3}$
D 2837 Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials ${ }^{3}$
D 3139 Specification for Joints for Plastic Pressure Pipes Using Flexible Elastomeric Seals ${ }^{3}$
D 3212 Specification for Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals ${ }^{3}$

[^1]NOTICE: This standard has either been superceded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

D 2241-00

F 412 Terminology Relating to Plastic Piping Systems ${ }^{3}$
F 442/F 442M Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe (SDR-PR) ${ }^{3}$

2.2 NSF Standards:

Standard No. 14 for Plastic Piping Components and Related Materials ${ }^{4}$
Standard No. 61 for Drinking Water Systems
Components-Health Effects ${ }^{4}$

3. Terminology

3.1 Definitions-Definitions are in accordance with Terminology F 412, and abbreviations are in accordance with Terminology D 1600, unless otherwise specified. The abbreviation for poly(vinyl chloride) plastic is PVC.
3.2 Definitions of Terms Specific to This Standard:
3.2.1 hydrostatic design stress-the estimated maximum tensile stress the material is capable of withstanding continuously with a high degree of certainty that failure of the pipe will not occur. This stress is circumferential when internal hydrostatic water pressure is applied.
3.2.2 pressure rating $(P R)$-the estimated maximum water pressure the pipe is capable of withstanding continuously with a high degree of certainty that failure of the pipe will not occur.
3.2.3 relation between standard dimension ratio, hydrostatic design stress, and pressure rating-The following expression, commonly known as the ISO equation, ${ }^{5}$ is used in this specification to relate standard dimension ratio, hydrostatic design stress, and pressure rating:

$$
2 S / P=R-1 \text { or } 2 S / P=\left(D_{0} / t\right)-1
$$

where:
$S=$ hydrostatic design stress, psi (or MPa),
$P=$ pressure rating, psi (or MPa),
$D_{0}=$ average outside diameter, in. (or mm),
$t=$ minimum wall thickness, in. (or mm), and
$R=$ standard thermoplastic pipe dimension ratio $\left(\mathrm{D}_{0} / \mathrm{t}\right.$ for PVC pipe), also known as SDR.
3.2.4 standard thermoplastic pipe dimension ratio (SDR)the ratio of pipe diameter to wall thickness. For PVC pipe it is calculated by dividing the average outside diameter of the pipe in inches or in millimetres by the minimum wall thickness in inches or in millimetres. If the wall thickness calculated by this formula is less than 0.060 in . (1.52 mm), it shall be arbitrarily increased to 0.060 in . The SDR values shall be rounded to the nearest 0.5 .
3.2.5 standard thermoplastic pipe materials designation code-The pipe materials designation code shall consist of the abbreviation PVC for the type of plastic, followed by the ASTM type and grade in Arabic numerals and the design stress in units of $100 \mathrm{psi}(0.7 \mathrm{MPa})$ with any decimal figures dropped. When the design stress code contains less than two figures, a cipher shall be used before the number. Thus a complete material code shall consist of three letters and four figures for PVC plastic pipe materials.

[^2]
4. Classification

4.1 General-This specification covers PVC pipe made to and marked with one of six Type/Grade/Design Stress designations (see X1.2) in seven standard dimension ratios.
4.2 Standard Thermoplastic Pipe Dimension Ratios (SDR)—This specification covers PVC pipe in seven standard dimension ratios, namely, 13.5, 17, 21, 26, 32.5, 41, and 64 which are uniform for all nominal pipe sizes for each material and pressure rating. These are referred to as SDR13.5, SDR21, SDR17, SDR26, SDR32.5, SDR41, and SDR64, respectively. The pressure rating is uniform for all nominal pipe sizes for a given PVC pipe material and SDR (see Table X1.1).
4.3 Hydrostatic Design Stresses-This specification covers pipe made from PVC plastics defined by four hydrostatic design stresses developed on the basis of long-term tests (appendix).

5. Materials

5.1 General—Poly(vinyl chloride) plastics used to make pipe meeting the requirements of this specification are categorized by means of two criteria, namely, (1) short-term strength tests, and (2) long-term strength tests.

Note 5-The PVC pipe intended for use in the transport of potable water should be evaluated and certified as safe for this purpose by a testing agency acceptable to the local health authority. The evaluation should be in accordance with requirements for chemical extraction, taste, and odor that are no less restrictive than those included in NSF Standard No. 14. The seal or mark of the laboratory making the evaluation should be included on the pipe.
5.2 Basic Materials-This specification covers pipe made from PVC plastics having certain physical and chemical properties as described in Specification D 1784.
5.3 Compound-The PVC compounds used for this pipe shall equal or exceed one of the following classes described in Specification D 1784: PVC 12454 or 14333.
5.4 Rework Material-The manufacturer shall use only his own clean rework pipe material and the pipe produced shall meet all the requirements of this specification.

6. Requirements

6.1 Dimensions and Tolerances:
6.1.1 Outside Diameters-The outside diameters and tolerances shall be as shown in Table 1 when measured in accordance with Test Method D 2122. The tolerances for out-of-roundness shall apply only on pipe prior to shipment.
6.1.2 Wall Thickness-The wall thicknesses and tolerances shall be as shown in Table 2 when measured in accordance with Test Method D 2122.
6.2 Sustained Pressure-The pipe shall not fail, balloon, burst, or weep as defined in Test Method D 1598 at the test pressures given in Table 3 when tested in accordance with 8.4.
6.2.1 Accelerated Regression Test-The accelerated regression test shall be used in place of both the sustained and burst pressure tests, at the option of the manufacturer. The test shall be conducted in accordance with 8.4.1. The pipe shall demonstrate a hydrostatic design basis projection at the 100 000-h intercept that meets the hydrostatic design basis category requirement (see the table for" Hydrostatic Design Basis Categories" of Test Method D 2837) for the PVC material

NOTICE: This standard has either been superceded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

TABLE 1 IPS PVC Pipe-Outside Diameters and Tolerances

Nominal Pipe Size, in.	Average Outside Diameter, in. (mm)	Tolerances, in. (mm)		
		For Average	Maximum Out-of-Roundness (Maximum Minus Minimum Diameter)	
			SDR64 SDR41 SDR32.5 SDR26 SDR21	$\begin{gathered} \text { SDR17 } \\ \text { SDR13.5 } \end{gathered}$
1/8	0.405 (10.29)	± 0.004 (0.10)	0.030 (0.76)	0.016 (0.41)
$1 / 4$	0.540 (13.72)	± 0.004 (0.10)	0.030 (0.76)	0.016 (0.41)
3/8	0.675 (17.14)	± 0.004 (0.10)	0.030 (0.76)	0.016 (0.41)
1/2	0.840 (21.34)	± 0.004 (0.10)	0.030 (0.76)	0.016 (0.41)
$3 / 4$	1.050 (26.67)	± 0.004 (0.10)	0.030 (0.76)	0.020 (0.51)
1	1.315 (33.40)	± 0.005 (0.13)	0.030 (0.76)	0.020 (0.51)
$11 / 4$	1.660 (42.16)	± 0.005 (0.13)	0.030 (0.76)	0.024 (0.61)
$11 / 2$	1.900 (48.26)	± 0.006 (0.15)	0.060 (1.52)	0.024 (0.61)
2	2.375 (60.32)	± 0.006 (0.15)	0.060 (1.52)	0.024 (0.61)
$21 / 2$	2.875 (73.02)	± 0.007 (0.18)	0.060 (1.52)	0.030 (0.76)
3	3.500 (88.90)	± 0.008 (0.20)	0.060 (1.52)	0.030 (0.76)
$31 / 2$	4.000 (101.60)	± 0.008 (0.20)	0.100 (2.54)	0.030 (0.76)
4	4.500 (114.30)	± 0.009 (0.23)	0.100 (2.54)	0.030 (0.76)
5	5.563 (141.30)	± 0.010 (0.25)	0.100 (2.54)	0.060 (1.52)
6	6.625 (168.28)	± 0.011 (0.28)	0.100 (2.54)	0.070 (1.78)
8	8.625 (219.08)	± 0.015 (0.38)	0.150 (3.81)	0.090 (2.29)
10	10.750 (273.05)	± 0.015 (0.38)	0.150 (3.81)	0.100 (2.54)
12	12.750 (323.85)	± 0.015 (0.38)	0.150 (3.81)	0.120 (3.05)
14	14.000 (355.60)	± 0.015 (0.38)	0.200 (5.08)	0.150 (3.81)
16	16.000 (406.40)	± 0.019 (0.48)	0.320 (8.13)	0.160 (4.06)
18	18.000 (457.20)	± 0.019 (0.48)	0.360 (9.14)	0.180 (4.57)
20	20.000 (508.00)	± 0.023 (0.58)	0.400 (10.2)	0.200 (5.08)
24	24.000 (609.60)	± 0.031 (0.79)	0.480 (12.2)	0.240 (6.10)
30	30.000 (762.00)	± 0.041 (1.04)	0.600 (15.2)	0.300 (7.62)
36	36.000 (914.40)	± 0.050 (1.27)	0.720 (18.3)	0.360 (9.14)

used in its manufacture. (Example: PVC 1120 pipe must have a minimum $100000-\mathrm{h}$ projection of 3830 psi and 85% lower confidence limit (LCL).)
6.3 Burst Pressure-The minimum burst pressures for PVC plastic pipe shall be as given in Table 4, when determined in accordance with 8.5.
6.4 Flattening-There shall be no evidence of splitting, cracking, or breaking when the pipe is tested in accordance with 8.6.
6.5 Extrusion Quality-The pipe shall not flake or disintegrate when tested in accordance with Test Method D 2152.
6.6 Impact Resistance-The minimum impact resistance for PVC plastic pipe shall be as given in Table 5, when determined in accordance with 8.7.

Note 6-The impact resistance test is intended for use only as a quality control test, not as a simulated service test. This test has been found to have no quality control significance in sizes over 12 in . (305 mm).

7. Workmanship, Finish, and Appearance

7.1 The pipe shall be homogeneous throughout and free from visible cracks, holes, foreign inclusions, or other defects. The pipe shall be as uniform as commercially practicable in color, opacity, density, and other physical properties.

Note 7-Color and transparency or opacity should be specified in the contract or purchase order.

8. Test Methods

8.1 Conditioning-Condition the test specimens at $73.4 \pm$ $3.6^{\circ} \mathrm{F}\left(23 \pm 2^{\circ} \mathrm{C}\right)$ and $50 \pm 5 \%$ relative humidity for not less than 40 h prior to test in accordance with Procedure A of Practice D 618 for those tests where conditioning is required.
8.2 Test Conditions-Conduct the tests in the standard laboratory atmosphere of $73.4 \pm 3.6^{\circ} \mathrm{F}\left(23 \pm 2^{\circ} \mathrm{C}\right)$ and $50 \pm$ 5% relative humidity, unless otherwise specified in the test methods or in this specification.
8.3 Sampling-The selection of the sample or samples of pipe shall be as agreed upon by the purchaser and the seller. In case of no prior agreement, any sample selected by the testing laboratory shall be deemed adequate.
8.3.1 Test Specimens-Not less than 50% of the test specimens required for any pressure test shall have at least a part of the marking in their central sections. The central section is that portion of pipe which is at least one pipe diameter away from an end closure.
8.4 Sustained Pressure Test-Select the test specimens at random. Test individually with water at the internal pressures given in Table 3, six specimens of pipe, each specimen at least ten times the nominal diameter in length, but not less than 10 in. $(250 \mathrm{~mm})$ or more than $3 \mathrm{ft}(1000 \mathrm{~mm})$ between end closures and bearing the permanent marking on the pipe. Maintain the specimens at the pressure indicated for a period of

NOTICE: This standard has either been superceded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

D 2241-00
TABLE 2 Wall Thicknesses and Tolerances for PVC Plastic Pipe with IPS Outside Diameters

Nominal Pipe Size, in.	Wall Thickness, ${ }^{\text {i in. }}{ }^{B}$													
	SDR64		SDR41		SDR32.5		SDR26		SDR21		SDR17		SDR13.5	
	Minimum	Tolerance												
1/8	...	\ldots	0.060	+0.020
1/4	0.060	+0.020
3/8	0.060	+0.020
1/2	\ldots		0.062	+0.020
$3 / 4$...	\ldots	\ldots	\ldots	0.060	+0.020	0.062	+0.020	0.078	+0.020
1	0.060	+0.020	0.063	+0.020	0.077	+0.020	0.097	+0.020
$11 / 4$...	\ldots	0.060	+0.020	0.064	+0.020	0.079	+0.020	0.098	+0.020	0.123	+0.020
$11 / 2$	0.060	+0.020	0.073	+0.020	0.090	+0.020	0.112	+0.020	0.141	+0.020
2	...	\ldots	0.073	+0.020	0.091	+0.020	0.113	+0.020	0.140	+0.020	0.176	+0.020
$2^{1 / 2}$	0.088	+0.020	0.110	+0.020	0.137	+0.020	0.169	+0.020	0.213	+0.026
3	0.085	+0.020	0.108	+0.020	0.135	+0.020	0.167	+0.020	0.206	+0.025	0.259	+0.031
$3^{1 / 2}$	0.098	+0.020	0.123	+0.020	0.154	+0.020	0.190	+0.023	0.235	+0.028	0.296	+0.036
4	0.070	+0.020	0.110	+0.020	0.138	+0.020	0.173	+0.020	0.214	+0.026	0.265	+0.032	0.333	+0.040
5	0.087	+0.020	0.136	+0.020	0.171	+0.021	0.214	+0.027	0.265	+0.032	0.327	+0.039	0.412	+0.049
6	0.104	+0.020	0.162	+0.020	0.204	+0.024	0.255	+0.031	0.316	+0.038	0.390	+0.047	0.491	+0.059
8	0.135	+0.020	0.210	+0.025	0.265	+0.032	0.332	+0.040	0.410	+0.049	0.508	+0.061
10	0.168	+0.020	0.262	+0.031	0.331	+0.040	0.413	+0.050	0.511	+0.061	0.632	+0.076
12	0.199	+0.024	0.311	+0.037	0.392	+0.047	0.490	+0.059	0.606	+0.073	0.750	+0.090
14	0.341	+0.048	0.430	+0.052	0.538	+0.064	0.666	+0.080	0.823	+0.099	...	\ldots
16	0.390	+0.055	0.492	+0.059	0.615	+0.074	0.762	+0.091	0.941	+0.113
18	0.439	+0.061	0.554	+0.066	0.692	+0.083	0.857	+0.103	1.059	+0.127
20	\ldots	\ldots	0.488	+0.068	0.615	+0.074	0.769	+0.092	0.952	+0.114	1.176	+0.141
24	0.585	+0.082	0.738	+0.088	0.923	+0.111	1.143	+0.137	1.412	+0.169
30	0.732	+0.102	0.923	+0.111	1.154	+0.138	1.428	+0.171	1.765	+0.212
36	\ldots	\ldots	0.878	+0.123	1.108	+0.133	1.385	+0.166	1.714	+0.205	2.118	+0.254	...	\ldots

${ }^{A}$ The minimum is the lowest wall thickness of the pipe at any cross section. The maximum permitted wall thickness, at any cross section, is the minimum wall thickness plus the stated tolerance. All tolerances are on the plus side of the minimum requirement.
${ }^{B} 1 \mathrm{in} .=25.4 \mathrm{~mm}$ (exact).

TABLE 3 Sustained Pressure Test Conditions for Water at $73^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)$ for PVC Plastic Pipe

${ }^{A}$ The fiber stresses used to derive these test pressures are as follows:

MPa (bar)		
PVC 1120, PVC 1220, PVC 2120	psi	$29.0(290)$
PVC 2116	4200	$23.2(232)$
PVC 2112	3360	$19.3(193)$
PVC 2110	2800	$15.9(159)$

Some minor adjustments have been made to keep the test pressures uniform to simplify testing.

1000 h . Hold the pressure as closely as possible, but within \pm $10 \mathrm{psi}(\pm 70 \mathrm{kPa})$. Condition the specimens at the test temperature of $73.4^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)$ to within $\pm 3.6^{\circ} \mathrm{F}\left(2^{\circ} \mathrm{C}\right)$. Maintain the test temperature at $73.4 \pm 3.6^{\circ} \mathrm{F}\left(23 \pm 2^{\circ} \mathrm{C}\right)$. Test in accordance with Test Method D 1598, except maintain the pressure at the values given in Table 3 for 1000 h . Failure of two of the six specimens tested shall constitute failure in the test. Failure of one of the six specimens tested is cause for retest of six additional specimens. Failure of one of the six specimens
tested in retest shall constitute failure in the test. Evidence of failure of the pipe shall be as defined in Test Method D 1598.
8.4.1 Accelerated Regression Test-Test in accordance with procedures in Test Method D 1598, using either free end or restrained end fittings. A minimum of six specimens shall be tested. Test three specimens at a single pressure that result in failures at or below 0.10 h . Test an additional three specimens at a single pressure that will result in failures at about 200 h . Generating additional data points to improve the LTHS or

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee F-17 on Plastic Piping System s and is the direct responsibility of Subcommittee F17.25 on Vinyl Based Pipe.

 Current edition approved June 10, 2000. Published September 2000. Originally published as D 2241-64. Last previous edition D 2241-99a.

[^1]: ${ }^{2}$ Annual Book of ASTM Standards, Vol 08.01.
 ${ }^{3}$ Annual Book of ASTM Standards, Vol 08.04.

[^2]: ${ }^{4}$ Available from the National Sanitation Foundation, P.O. Box 1468, Ann Arbor, MI 48106.
 ${ }^{5}$ ISO R161-1960, Pipes of Plastics Materials for the Transport of Fluids (Outside Diameters and Nominal Pressures) Part 1, Metric Series.

