TECHNICAL ISO/IEC
REPORT TR
24732

First edition
2009-01-15

Information technology — Programming
languages, their environments and
system software interfaces — Extension
for the programming language C to
support decimal floating-point arithmetic

Technologies. de l'information— Langages de programmation, leur

environnement.etinterfaces.des'logiciels de systemes — Extension
pour que le langage de programmation C supporte l'arithmétique du
point flottant.décimal

Reference number
ISO/IEC TR 24732:2009(E)

1SO|IEC
=g g © ISO/IEC 2009

ISO/IEC TR 24732:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2009 — All rights reserved

ISO/IEC TR 24732:2009(E)

Contents Page
[T 0] (=110 (o [iv
0 L)oo [Tex1 o] o N %
0.1 [7T (o | {0 11] o o S PSS %
0.2 L= L g L=t (oA g o To (= %
0.3 LT 0] 0 1= 1T Vi
1 Yo o1 PSPPI 1
2 NOIMIALIVE TEIEIENCES ... eevt ittt e e e et e e e e e e e s e e es e e e s eees e s saa e essaaeessateeessaanaessarnens 1
3 Predefined MACIO NAMIE ... it ees et e e e e e e e e et e e et e e e s e e e e s saa e essaaeessaaseessaasaessarnens 2
4 D =Tol 1o b= U o T U o IR 1Y = T 2
5 Characteristics of decimal floating types <float. N> 3
6 (000) 01Y/<T 1110] 8 1N 5
6.1 Conversions between decimal floating and intege ettt et a e e e et 5
6.2 Conversions among decimal floating types, and b etween decimal floating types and

(o= L= g Tl 0T L o Y/ = TSRS 6
6.3 Conversions betweenmdecimal floating land coample PO .. N LB W e, 6
6.4 USUAl @rithMELIC CONMVEISIONSvv i iiiiis ettt e e e e e e e e e et e e e s e e s s es e e sea e s saat e eesaaeeessaanns 6
6.5 Default argument promotion £ ap r o o ah B 0 Bl B 00 h ettt e 7
7 (OF0] 1) =1] £ 7
7.1 Unsuffixed floating CONSIANT...... ey /516 10+ 54673 5 4943636 +everererrresrrssesssssserssnsssssssssssssssnsnsnsnssssnnnsnnsnnnsnnns 7
7.1.1 The FLOAT_ CONST DECI IMAL B DTG ..+ 11 v/sssei somes o33 « 45 63 5050« se545 63 2 84 sssssssssnssnnssnnsnnnsnnssnnnsnnssnnss 8
8 Arithmetic operations.........L0a20dLcQ 205000240 2222000 e 9
8.1 (O] 01T =1 (0] £ PPN 9
8.2 [0 g Tox 0] o TR 9
8.3 (000] 017/ (110 8 F T 10
9 [0 = U 10
9.1 5y = Ta Lo F= Yo I aT=T= o [T £ T 10
9.2 Floating-point environment <TENV.N> ... i e e e 10
9.3 Decimal mathematiCs KMAth.N>.. ... e e e e e e aaaa s 11
9.4 N o g F= L g T g B 1] [110) 1T 18
9.5 Formatted iNPUt/OULPUL SPECITIEIS ..uuuuuiiiiiis ettt e e e e e e e een s 19
9.6 strtod32, strtod64, and strtod128 functions <st AlD.N> e s 21
9.7 wcstod32, westod64, and westod128 functions <wc NI N> e 23
9.8 Type-generic Macros <tgmMath. N> 25
121][To o] =T o])Y/ PPPPTRRSRPSPRPP 26

© ISO/IEC 2009 — All rights reserved iii

ISO/IEC TR 24732:2009(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still undérctéchnical developmentcorwhere for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has-collected-data’ of a different kind from that which is
normally published as'ansinternational'Standard: ('state of thecart”, for’example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

ISO/IEC TR 24732, which is a Technical Report of type 2, was prepared by Joint Technical Committee

ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

iv © ISO/IEC 2009 — All rights reserved

ISO/IEC TR 24732:2009(E)

0 Introduction

0.1 Background

Most of today's general purpose computing architectures provide binary floating-point arithmetic in hardware.
Binary floating-point is an efficient representation which minimizes memory use, and is simpler to implement
than floating-point arithmetic using other bases. It has therefore become the norm for scientific computations,
with almost all implementations following the IEEE 754 standard for binary floating-point arithmetic.

However, human computation and communication of numeric values almost always uses decimal arithmetic
and decimal notations. Laboratory notes, scientific papers, legal documents, business reports and financial
statements all record numeric values in decimal form. When numeric data are given to a program or are
displayed to a user, binary to-and-from decimal conversion is required. There are inherent rounding errors
involved in such conversions; decimal fractions cannot, in general, be represented exactly by binary floating-
point values. These errors often cause usability and efficiency problems, depending on the application.

These problems are minor when the application domain accepts, or requires results to have, associated error
estimates (as is the case with scientific applications). However, in business and financial applications,
computations are either required to be exact (with no rounding errors) unless explicitly rounded, or be
supported by detailed analyses that are auditable to be correct. Such applications therefore have to take
special care in handling any rounding errors introduced by the computations.

The most efficient way to avoid conversion error is to use decimal arithmetic. Currently, the IBM zArchitecture
(and its predecessors; since| System/360)\is| a widely Jused 'system ‘that [supports built-in decimal arithmetic.
This, however, provides integer arithmetic only, meaning that every number and computation has to have
separate scale information presefved.and omputed ihforder te maintain the required precision and value
range. Such scaling is difficult to code and is error-prone; it affects execution time significantly, and the
resulting program is often difficult to maintain and enhance.

Even though the hardware may not!provide decimal arithmetic operations; the-support can still be emulated by
software. Programming languages used forobusiness. applicationseither have native decimal types (such as
PL/l, COBOL, C#, or Visual Basic) or provide decimal arithmetic libraries (such as the BigDecimal class in
Java). The arithmetic used in business applications, nowadays, is almost invariably decimal floating-point; the
COBOL 2002 1SO standard, for example, requires that all standard decimal arithmetic calculations use 32-
digit decimal floating-point.

Arguably, the C language hits a sweet spot within the wide range of programming languages available today —
it strikes an optimal balance between usability and performance. Its simple and expressive syntax makes it
easy to program; and its close-to-the-hardware semantics makes it efficient. Despite the advent of newer
programming languages, C is still often used together with other languages to code the computationally
intensive part of an application. In many cases, entire business applications are written in C/C++. To maintain
the vitality of C, the need for decimal arithmetic by the business and financial community cannot be ignored.

The importance of this has been recognized by the IEEE. The IEEE 754 standard is currently being revised,
and the major change in that revision is the addition of decimal floating-point formats and arithmetic.

Historically there has been a close tie between IEEE 754 and C with respect to floating-point specification.
This Technical Report proposes to add decimal floating types and arithmetic to the C programming language
specification.

0.2 The arithmetic model

This Technical Report proposes to add support for the decimal formats for floating-point data specified in IEEE
754-2008, with operations and behaviors consistent with that specification. IEEE 754-2008 provides a unified
specification for floating-point arithmetic using both binary radix and decimal radix representations. For binary
radix, it specifies upwardly-compatible extensions to the previous version, IEEE 754-1985 (equivalently IEC
60559:1989, which is already supported by C99 implementations that define the macro __STDC | EC 559_).

© ISO/IEC 2009 — All rights reserved \Y

ISO/IEC TR 24732:2009(E)

Those extensions are not considered in this proposal. Instead, this proposal confines itself to supporting the
decimal radix formats, which are new in this revision of IEEE 754.

The model of floating-point arithmetic used in IEEE 754-2008 has three components:

— data - numbers and NaNs, which can be manipulated by, or be the results of, the operations it
specifies

— operations - (addition, multiplication, conversions, etc) which can be carried out on data

— context - the status of operations (namely, exceptions flags), and controls to govern the results of
operations (for example, rounding modes). (IEEE 754-2008 does not use a single term to refer to
these collectively.)

The model defines these components in the abstract. It neither defines the way in which operations are
expressed (which might vary depending on the computer language or other interface being used), nor does it
define the concrete representation (specific layout in storage, or in a processor's register, for example) of data
or context, except that it does define specific encodings that are to be used for data that may be exchanged
between different implementations that conform to the specification.

From the perspective of the C language, data are represented by data types, operations are defined within
expressions, and context is the floating environment specified in <f env. h>. This Technical Report specifies
how the C language implements these components.

0.3 The formats

IEEE 754-2008 specifies formats, in terms ©f their, radix;exponént range; and precision (significand length), to
support general purpose decimal floating-point arithmetic. It specifies operation semantics in terms of values
and abstract representations of data (format members). It also specifies bit-level encodings for formats
intended for data interchange.

C99 specifies floating-point arithmetic using)a two-layer,organization.. The) first layer provides a specification
using an abstract model. The representation of a floating-point number is specified in an abstract form where
the constituent components of the representation are defined (sign, exponent, significand) but not the internals
of these components. In particular, the exponent range, significand size, and the base (or radix) are
implementation defined. This allows flexibility for an implementation to take advantage of its underlying
hardware architecture. Furthermore, certain behaviors of operations are also implementation defined, for
example in the area of handling of special numbers and in exceptions.

The reason for this approach is historical. At the time when C was first standardized, there were already
various hardware implementations of floating-point arithmetic in common use. Specifying the exact details of a
representation would make most of the existing implementations at the time not conforming.

C99 provides a binding to IEEE 754 by specifying an Annex F, IEC 60559 floating point arithmetic, and
adopting that standard by reference. An implementation may choose not to conform to IEEE 754 and indicates
that by not defining the macro __STDC | EC 559 __ .This means not all implementations need to support
IEEE 754, and the floating-point arithmetic need not be binary.

This Technical Report specifies decimal floating-point arithmetic according to IEEE 754-2008, with the
constituent components of the representation defined. This is more stringent than the existing C99 approach
for the floating types. Since it is expected that all decimal floating-point hardware implementations will conform
to the revised IEEE 754, binding to this standard directly benefits both implementers and programmers.

vi © ISO/IEC 2009 — All rights reserved

TECHNICAL REPORT ISO/IEC TR 24732:2009(E)

Information technology — Programming languages, the ir
environments and system software interfaces — Exten sion for
the programming language C to support decimal float ing-point
arithmetic

1 Scope

This Technical Report specifies an extension to the programming language C, specified by the International
Standard ISO/IEC 9899:1999. The extension provides support for decimal floating-point arithmetic that is
intended to be consistent with the specification in IEEE 754-2008. Any conflict between the requirements
described here and that specification is unintentional. This Technical Report defers to IEEE 754-2008.

The binary floating-point arithmetic as specified in IEEE 754-2008 is not considered in this Technical Report.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies; For,undated, references, the latest edition of the referenced
document (including.any amendments) applies.

ISO/IEC 9899:1999, Programming languages — C

ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C — Technical Corrigendum 1

ISO/IEC 9899:1999/Cor.2;2004, Programming languages — C — Technical Corrigendum 2

ISO/IEC TR 18037, Programming languages — C — Extensions to support embedded processors

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems 1)

IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

IEEE 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

A Decimal Floating-Point Specification, Schwarz, Cowlishaw, Smith, and Webb, in the Proceedings of the 15th
IEEE Symposium on Computer Arithmetic (Arith 15), IEEE, June 2001

NOTE For reference materials relating to IEEE 754-2008 see [3].

1 Previously designated IEC 559:1989.

© ISO/IEC 2009 — All rights reserved 1

ISO/IEC TR 24732:2009(E)

3 Predefined macro name
The following macro name is conditionally defined by the implementation:

__STDC _DEC FP__ The integer constant 200805L, intended to indicate conformance to this technical
report.

4 Decimal floating types

This Technical Report introduces three decimal floating types, designated as _Deci mal 32, _Deci mal 64 and
_Deci mal 128. The set of values of type _Deci mal 32 is a subset of the set of values of the type
_Deci mal 64; the set of values of the type _Deci mal 64 is a subset of the set of values of the type
_Deci mal 128.

Within the type hierarchy, decimal floating types are base types, real types and arithmetic types.

The types fl oat, doubl e, and | ong doubl e are also called generic floating types for the purpose of this
Technical Report.

Note: C does not specify a radix for f| oat, doubl e and | ong doubl e. An implementation can choose the
representation of f1 oat, doubl e and | ong doubl e to be the same as the decimal floating types. In any
case, the decimal floating types are distinct from fl oat, doubl e and | ong doubl e regardless of the
representation.

Note: This Technical Report does not define decimal . complex:types, or,decimal imaginary types. The three
complex types remain as fl oat _Conplex, doubl‘e”_Conpl ex and I'ong doubl e _Conpl ex, and the

three imaginary types remain as float _Imaginary, double _Inmmginary and |ong double
_l magi nary.

Suggested changes to C99:

Change the first sentence of 6.2.5#10:

[10] There are three generic floating types, designated as f | oat, doubl e and | ong doubl e.
Add the following paragraphs after 6.2.5#10:

[10a] There are three decimal floating types, designated as _Deci mal 32, _Deci mal 64 and _Deci nal 128.
The set of values of the type _Deci mal 322) is a subset of the set of values of the type _Deci mal 64; the
set of values of the type _Deci nal 64 is a subset of the set of values of the type _Deci nal 128. Decimal
floating types are real floating types.

2) The 32-bit format is a storage only format in IEEE 754-2008.

2 © ISO/IEC 2009 — All rights reserved

ISO/IEC TR 24732:2009(E)

[10b] Together, the generic floating types and the decimal floating types comprise the real floating types.
Add the following to 6.7.2 Type specifiers:
type-specifier:
_Deci mal 32
_Deci mal 64
_Deci mal 128
Add the following paragraph after 6.5#8:

[8a] Expressions involving decimal floating-point operands are evaluated according to the semantics of IEEE
754-2008, including production of results with the preferred exponent as specified in IEEE 754-2008.

5 Characteristics of decimal floating types <float. h>

The characteristics of decimal floating types are defined in terms of a model specifying general decimal
arithmetic (0.2). The formats are specified in IEEE 754-2008 (0.3).

The three decimal formats defined in IEEE 754-2008 correspond to the three decimal floating types as follows:
— _Deci mal 32 is a decimal32 number, which is encoded in four consecutive octets (32 bits)
— _Deci nal 64 is a decimal64 number, which is encoded in eight consecutive octets (64 bits)
— _Deci nal 128 is a decimal128 number, which is encoded in 16 consecutive octets (128 bits)

The value of a finite number is given by (:1)¥9" ¥ coetficient x'105*°™™, Refer to IEEE 754-2008 for details of
the format.

These formats are characterized by the length of the coefficient, and the maximum and minimum exponent.
The coefficient is not normalized, so trailing zeros are significant; i.e., 1.0 is equal to but can be distinguished
from 1.00. The table below shows these characteristics by format:

Format _Deci nal 32 _Deci nal 64 _Deci mal 128
Coefficient length in digits 7 16 34
Maximum Exponent (Epax) 97 385 6145
Minimum Exponent (Emin) -94 -382 -6142

If the macro __STDC WANT_DEC FP__ is defined at the point in the source file where the header <f | oat . h>
is included, the header <f | oat . h> shall define several macros that expand to various limits and parameters
of the decimal floating types. The names and meaning of these macros are similar to the corresponding
macros for generic floating types.

Suggested change to C99:

Add the following after 5.2.4.2.2;

5.2.4.2.2a Characteristics of decimal floating type s <fl oat . h>

[1] Macros in <f | oat . h> provide characteristics of floating types in terms of the model presented in 5.2.4.2.2.
The prefixes DEC32_, DEC64_, and DEC128_ denote the types _Deci mal 32, _Deci nal 64, and
_Deci mal 128 respectively.

© ISO/IEC 2009 — All rights reserved 3

ISO/IEC TR 24732:2009(E)

[2] For decimal floating-point, it is often convenient to consider an alternate equivalent model where the
significand is represented with integer rather than fraction digits: a floating-point number (x) is defined by the
model

3 (e—p)pf (P-K)
x=b“ "% f.b

where s, b, e, p, and f, are as defined in 5.2.4.2.2, and b = 10.

[3] The term quantum exponent refers to q = e - p and coefficient to ¢ = ff,...f,, an integer between 0 and b” -
1inclusive. Thus, x = s * ¢ * bY is represented by the triple of integers (s, c, Q).

[4] For binary floating-point following IEC 60559 (and IEEE 754-2008), representations in the model described
in 5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However, for decimal
floating-point, representations that have the same numerical value but different quantum exponents, e.g., (1,
10, -1) representing 1.0 and (1, 100, -2) representing 1.00, are distinguishable. To facilitate exact fixed-point
calculation, standard decimal floating-point operations and functions have a preferred quantum exponent, as
specified in IEEE 754-2008, which is determined by the quantum exponents of the operands if they have
decimal floating-point types (or by specific rules for conversions from other types), and they produce a result
with that preferred quantum exponent, or as close to it as possible within the limitations of the type. For
example, the preferred quantum exponent for addition is the minimum of the quantum exponents of the
operands. Hence (1, 123, - 2) + (1, 4000, -3) = (1, 5230, -3) or 1.23 + 4.000 = 5.230.

[5] Except for assignment and casts, the values of operations with decimal floating operands and values
subject to the usual arithmetic conversions and oftdecimal floating eonstants,are ievaluated to a format whose
range and precision may be greater than required by the type. The use of evaluation formats is characterized
by the implementation-defined value of DEC [EVAL (VETHED:

-1 indeterminable;

0 evaluate all operations and constants just-to-the-range-and precision of the type;

1 evaluate operations'dnd'constants oftype“Decimal’32“and- °Deci'nal’64 to the range and
precision of the _Deci mal 64 ‘typé, ' evaluate“cDeci nal 128 operations and constants to the
range and precision of the _Deci mal 128 type;

2 evaluate all operations and constants to the range and precision of the _Deci mal 128 type.

[6] The integer values given in the following lists shall be replaced by constant expressions suitable for use in
#i f preprocessing directives:

e radix of exponent representation, b(=10)

For the generic floating-point types, this value is implementation-defined and is specified by the macro
FLT_RADI X. For the decimal floating-point types there is no corresponding macro, since the value 10

is an inherent property of the types. Wherever FLT_RADI X appears in a description of a function that

has versions that operate on decimal floating-point types, it is noted that for the decimal floating-point

versions the value used is implicitly 10, rather than FLT_RADI X.

e number of digits in the coefficient

DEC32_MANT DI G 7
DEC64_MANT DI G 16
DEC128_MANT DI G 34

e minimum exponent

DEC32_M N_EXP -94
DEC64_M N_EXP -382
DEC128_M N_EXP - 6142

4 © ISO/IEC 2009 — All rights reserved

ISO/IEC TR 24732:2009(E)

e maximum exponent

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385
DEC128_MAX_EXP 6145

¢ maximum representable finite decimal floating number (there are 6, 15 and 33 9's after the decimal
points respectively)

DEC32_MAX 9. 999999E96DF
DEC64_ MAX 9. 999999999999999E384DD
DEC128_MAX 9. 999999999999999999999999999999999E6144DL

¢ the difference between 1 and the least value greater than 1 that is representable in the given floating

point type

DEC32_EPSI LON 1E- 6DF
DEC64_EPSI LON 1E- 15DD
DEC128_EPSI LON 1E- 330L

e minimum normalized positive decimal floating number

DEC32_M N 1E- 95DF
DEC64_M N 1E- 383DD
DEC128_M N 1E- 6143DL

e minimum positive subnormal decimal floating number

DEC32_SUBNORVAL_M N 0. 000001E- 95DF
DEC62_SUBNORVAL_M N 0. 000000000000001E- 383DD
DEC128_SUBNCRVAL_M N 0:--000000600000000000000000000000001E- 6143DL

6 Conversions

6.1 Conversions between decimal floating and integ er

For conversions between real floating and integer types, C99 6.3.1.4 leaves the behavior undefined if the
conversion result cannot be represented (Annex F.4 tightened up the behavior.) To help writing portable code,
this Technical Report provides defined behavior for decimal floating type. Furthermore, it is useful to allow
program execution to continue without interruption unless the program needs to check the condition.
Suggested changes to C99:

Change the first sentence of 6.3.1.4 paragraph 1:

[1] When a finite value of generic floating type is converted to an integer type ...

Add the follow paragraph after 6.3.1.4 paragraph 1:

[1a] When a finite value of decimal floating type is converted to an integer type other than _Bool , the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part cannot be
represented by the integer type, the “invalid” floating-point exception shall be raised and the result of the
conversion is unspecified.

Change the first sentence of 6.3.1.4 paragraph 2:

[2] When a value of integer type is converted to a generic floating type, ...

© ISO/IEC 2009 — All rights reserved 5

ISO/IEC TR 24732:2009(E)

Add the following paragraph after 6.3.1.4 paragraph 2:
[2a] When a value of integer type is converted to a decimal floating type, if the value being converted can be
represented exactly in the new type, it is unchanged. If the value being converted is in the range of values that

can be represented but cannot be represented exactly, the result shall be correctly rounded with exceptions
raised as specified in IEEE 754-2008.

6.2 Conversions among decimal floating types, and between decimal floating types and
generic floating types

The specification is similar to the existing ones for f | oat , doubl e and | ong doubl e, except that when the
result cannot be represented exactly, the behavior is tightened to become correctly rounded.

Suggested change to C99:
Add after 6.3.1.5#2.

[3] When a _Deci mal 32 is promoted to _Deci nal 64 or _Deci mal 128, or a _Deci nal 64 is promoted to
_Deci mal 128, the value is converted to the type being promoted to. All extra precision and/or range (for the
converted to type) are removed.

[4] When a _Deci mal 64 is demoted to _Deci mal 32, a _Deci mal 128 is demoted to _Deci mal 64 or
_Deci mal 32, or conversion is performed among decimal and generic floating types other than the above, if
the value being converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that'can be represented but cannaot be ‘represented exactly, the result is
correctly rounded with exceptions raised as specified in IEEE 754-2008.

6.3 Conversions between decimal floating and compl ex

This is covered by C99 6.3.1.7.

6.4 Usual arithmetic conversions

In an application that is written using decimal arithmetic, mixed operations between decimal and other real
types are likely to occur only when interfacing with other languages, calling existing libraries written for binary
floating point arithmetic, or accessing existing data. Determining the common type for mixed operations is
difficult because ranges overlap; therefore, mixed mode operations are not allowed and the programmer must
use explicit casts. Implicit conversions are allowed only for simple assignment, r et ur n statement, and in
argument passing involving prototyped functions.

Following are suggested changes to C99:

Insert the following to 6.3.1.8#1, after "This pattern is called the usual arithmetic conversions:"

6.3.1.8[1]

... This pattern is called the usual arithmetic conversions:

If one operand is a decimal floating type, all other operands shall not be generic floating type, complex type, or
imaginary type:

First if either operand is _Deci mal 128, the other operand is converted to _Deci mal 128.
Otherwise, if either operand is _Deci nal 64, the other operand is converted to _Deci nal 64.

Otherwise, if either operand is _Deci mal 32, the other operand is converted to _Deci nal 32.

6 © ISO/IEC 2009 — All rights reserved

	Ú5!à<æØŽÍsÅ‚¯��Ïœ'}�Ñ®7÷«EjŁï%JłhTÃ�œ%Þ!K»ﬁ‚[−�=/ež´Ré�žÏ
�)‡"³}3µþ4õŁhl–˙
Û˝Ü�=ˆÃuºí¢I˜w‘ÀÅ

