

Designation: D 2270 - 93 (Reapproved 1998)

An American National Standard British Standard 4459

Designation: 226/91 (95)

Standard Practice for Calculating Viscosity Index From Kinematic Viscosity at 40 and 100°C¹

This standard is issued under the fixed designation D 2270; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This is also a standard of the Institute of Petroleum issued under the fixed designation IP 226. The final number indicates the year of last revision

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

- 1.1 This practice² specifies the procedures for calculating the viscosity index of petroleum products, such as lubricating oils, and related materials from their kinematic viscosities at 40 and 100°C.³
- 1.1.1 *Procedure A*—For petroleum products of viscosity index up to and including 100.
- 1.1.2 *Procedure B*—For petroleum products of which the viscosity index is 100 or greater.
- 1.2 Table 1 given in this practice applies to petroleum products with kinematic viscosities between 2 and 70 mm ²/s (cSt) at 100°C.⁴ Equations are provided for calculating viscosity index for petroleum products having kinematic viscosities above 70 mm²/s (cSt) at 100°C.
- 1.3 The kinematic viscosity values are determined with reference to a value of 1.0038 mm²/s (cSt) at 20.00°C for distilled water. The determination of the kinematic viscosity of a petroleum product shall be carried out in accordance with Test Methods D 445, IP 71, ISO 3104, or ISO 2909.
- 1.4 The values stated in SI units are to be regarded as the standard.

2. Referenced Documents

2.1 ASTM Standards:

- ¹ This practice is under the jurisdiction of ASTM Committee D-2 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.07 on Flow Properties.
- In the IP, this practice is under the jurisdiction of the Standardization Committee. Current edition approved March 15, 1993. Published May 1993. Originally published as D 2270 64. Last previous edition D 2270 91.
- ² Metrication of Viscosity Index System Method D 2270 is available from ASTM Headquarters. Request RR: D02-1009.
- 3 The results obtained from the calculation of VI from kinematic viscosities determined at 40 and 100°C are virtually the same as those obtained from the former VI system using kinematic viscosities determined at 37.78 and 98.89°C.
 - $^{4} 1 \text{ cSt} = 1 \text{ mm}^{2}/\text{s} = 10^{-6} \text{m}^{2}/\text{s}.$

- D 341 Viscosity-Temperature Charts for Liquid Petroleum Products⁵
- D 445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity)⁵
- D 1695 Terminology of Cellulose and Cellulose Derivatives⁶
- 2.2 ISO Standards:
- ISO 2909 Petroleum products—Calculation of Viscosity Index from kinematic viscosity⁷
- ISO 3104 Petroleum products—Transparent and opaque liquids—Determination of kinematic viscosity and calculation of dynamic viscosity⁷
- 2.3 IP Document:

IP 718

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *viscosity index*, *n*—an arbitrary number used to characterize the variation of the kinematic viscosity of a petroleum product with temperature.
- 3.1.1.1 *Discussion*—For oils of similar kinematic viscosity, the higher the viscosity index the smaller the effect of temperature on its kinematic viscosity.

Note 1—Viscosity index is also used in Terminology D 1695 in a definition unrelated to that in 3.1.1.

⁵ Annual Book of ASTM Standards, Vol 05.01.

⁶ Annual Book of ASTM Standards, Vol 06.03.

⁷ Available from American National Standards Institute, 11 W. 42nd St., 13th Fl., New York, NY 10036.

⁸ Available from Institute of Petroleum, 61 New Cavendish St., London W1M 8AR, United Kingdom.

TABLE 1 Basic Values for L and H for Kinematic Viscosity in 40-100°C System

Kinematic						l						l			I		
Viscosity			Kinematic														
at	L	Н	Viscosity at 100°C,	L	Н												
100°C,	_	,,	mm²/s	_	,,	mm²/s	_	"	mm ² /s	_	,,	mm ² /s	_	"	mm²/s	_	• • •
mm²/s			(cSt)														
(cSt)			` ′						` ′			, ,			<u> </u>		
2.00	7.994	6.394	7.00	78.00	48.57	12.0	201.9	108.0	17.0	369.4	180.2	24.0	683.9	301.8	42.5	1935	714.9
2.10	8.640	6.894	7.10	80.25	49.61	12.1	204.8	109.4	17.1	373.3	181.7	24.2	694.5	305.6	43.0	1978	728.2
2.20	9.309	7.410	7.20	82.39	50.69	12.2	207.8	110.7	17.2	377.1	183.3	24.4	704.2	309.4	43.5	2021	741.3
2.30 2.40	10.00 10.71	7.944 8.496	7.30 7.40	84.53 86.66	51.78 52.88	12.3 12.4	210.7 213.6	112.0 113.3	17.3 17.4	381.0 384.9	184.9 186.5	24.6 24.8	714.9 725.7	313.0 317.0	44.0 44.5	2064 2108	754.4 767.6
2.40	10.71	0.400	7.40	00.00	32.00	12.7	210.0	110.0	17.4	004.0	100.0	24.0	720.7	017.0	1 44.5	2100	707.0
2.50	11.45	9.063	7.50	88.85	53.98	12.5	216.6	114.7	17.5	388.9	188.1	25.0	736.5	320.9	45.0	2152	780.9
2.60	12.21	9.647	7.60	91.04	55.09	12.6	219.6	116.0	17.6	392.7	189.7	25.2	747.2	324.9	45.5	2197	794.5
2.70	13.00	10.25	7.70	93.20	56.20	12.7	222.6	117.4	17.7	396.7	191.3	25.4	758.2	328.8	46.0	2243	808.2
2.80	13.80	10.87	7.80	95.43	57.31	12.8	225.7	118.7	17.8	400.7	192.9	25.6	769.3	332.7	46.5	2288	821.9
2.90	14.63	11.50	7.90	97.72	58.45	12.9	228.8	120.1	17.9	404.6	194.6	25.8	779.7	336.7	47.0	2333	835.5
3.00	15.49	12.15	8.00	100.0	59.60	13.0	231.9	121.5	18.0	408.6	196.2	26.0	790.4	340.5	47.5	2380	849.2
3.10	16.36	12.82	8.10	102.3	60.74	13.1	235.0	122.9	18.1	412.6	197.8	26.2	801.6	344.4	48.0	2426	863.0
3.20	17.26	13.51	8.20	104.6	61.89	13.2	238.1	124.2	18.2	416.7	199.4	26.4	812.8	348.4	48.5	2473	876.9
3.30	18.18	14.21	8.30	106.9	63.05	13.3	241.2	125.6	18.3	420.7	201.0	26.6	824.1	352.3	49.0	2521	890.9
3.40	19.12	14.93	8.40	109.2	64.18	13.4	244.3	127.0	18.4	424.9	202.6	26.8	835.5	356.4	49.5	2570	905.3
3.50	20.09	15.66	8.50	111.5	65.32	13.5	247.4	128.4	18.5	429.0	204.3	27.0	847.0	360.5	50.0	2618	919.6
3.60	21.08	16.42	8.60	113.9	66.48	13.6	250.6	129.8	18.6	433.2	205.9	27.0	857.5	364.6	50.5	2667	933.6
3.70	22.09	17.19	8.70	116.2	67.64	13.7	253.8	131.2	18.7	437.3	207.6	27.4	869.0	368.3	51.0	2717	948.2
3.80	23.13	17.97	8.80	118.5	68.79	13.8	257.0	132.6	18.8	441.5	209.3	27.6	880.6	372.3	51.5	2767	962.9
3.90	24.19	18.77	8.90	120.9	69.94	13.9	260.1	134.0	18.9	445.7	211.0	27.8	892.3	376.4	52.0	2817	977.5
					=												
4.00	25.32	19.56 20.37	9.00	123.3 125.7	71.10 72.27	14.0	263.3	135.4	19.0	449.9 454.2	212.7	28.0	904.1	380.6 384.6	52.5	2867	992.1
4.10 4.20	26.50 27.75	21.21	9.10 9.20	128.0	73.42	14.1 14.2	266.6 269.8	136.8 138.2	19.1 19.2	454.2	214.4 216.1	28.2 28.4	915.8 927.6	388.8	53.0 53.5	2918 2969	1007 1021
4.30	29.07	22.05	9.30	130.4	74.57	14.3	273.0	139.6	19.3	462.7	217.7	28.6	938.6	393.0	54.0	3020	1036
4.40	30.48	22.92	9.40	132.8	75.73	14.4	276.3	141.0	19.4	467.0	219.4	28.8	951.2	396.6	54.5	3073	1051
						D2. /			uali			H.a					
4.50	31.96	23.81	9.50	135.3	76.91	14.5	279.6	142.4	19.5	471.3	221.1	29.0	963.4	401.1	55.0	3126	1066
4.60	33.52	24.71 25.63	9.60	137.7 140.1	78.08 79.27	14.6	283.0	143.9 145.3	19.6	475.7 479.7	222.8 224.5	29.2	975.4	405.3 409.5	55.5	3180 3233	1082
4.70 4.80	35.13 36.79	26.57	9.70 9.80	140.1	80.46	14.7 14.8	286.4 289.7	145.3	19.7 19.8	483.9	224.5	29.4 29.6	987.1 998.9	413.5	56.0 56.5	3286	1097 1112
4.90	38.50	27.53	9.90	145.2	81.67	14.9	293.0	148.2	19.9	488.6	227.7	29.8	1011	417.6	57.0	3340	1127
5.00	40.23	28.49	10.0	147.7	82.87	15.0	296.5	149.7	7 20.0	493.2	229.5	30.0	1023	421.7	57.5	3396	1143
5.10	41.99	29.46	10.1	150.3	84.08	15.1	300.0	151.2	20.2	501.5	233.0	30.5	1055	432.4	58.0	3452	1159
5.20 5.30	43.76 45.53	30.43	10.2 C8 10.3	152.9 155.4	85.30 86.51	15.2 IS 15.3	303.4 306.9	152.6 154.1	20.4	510.8 519.9	236.4 240.1	31.0 31.5	1086 1119	443.2 454.0	58.5 59.0	3507 3563	1175 1190
5.40	47.31	32.37	10.3	158.0	87.72	15.4	310.3	155.6	20.8	528.8	243.5	32.0	1151	464.9	59.5	3619	1206
0.10		02.07		.00.0	0		0.0.0	.00.0		020.0	0.0	02.0			00.0	00.0	.200
5.50	49.09	33.34	10.5	160.6	88.95	15.5	313.9	157.0	21.0	538.4	247.1	32.5	1184	475.9	60.0	3676	1222
5.60	50.87	34.32	10.6	163.2	90.19	15.6	317.5	158.6	21.2	547.5	250.7	33.0	1217	487.0	60.5	3734	1238
5.70	52.64	35.29	10.7	165.8	91.40	15.7	321.1	160.1	21.4	556.7		33.5	1251	498.1	61.0	3792	1254
5.80 5.90	54.42 56.20	36.26 37.23	10.8 10.9		92.65 93.92	15.8 15.9		161.6 163.1	21.6 21.8		257.8 261.5	34.0 34.5	1286 1321	509.6 521.1	61.5 62.0	3850 3908	1270 1286
5.50	50.20	01.20	10.9	171.4	30.32	13.9	0.0	100.1	21.0	575.0	201.3	04.0	1021	JE 1.1	02.0	5500	1200
6.00	57.97	38.19	11.0	173.9	95.19	16.0	331.9	164.6	22.0	585.2	264.9	35.0	1356	532.5	62.5	3966	1303
6.10	59.74		11.1	176.6	96.45	16.1	335.5	166.1	22.2	595.0	268.6	35.5	1391	544.0	63.0	4026	1319
6.20	61.52		11.2	179.4		16.2	339.2	167.7	22.4	604.3		36.0	1427	555.6	63.5	4087	1336
6.30		41.13	11.3	182.1		16.3	342.9		22.6	614.2	275.8 279.6	36.5	1464	567.1	64.0	4147	1352
6.40	vo. 18	42.14	11.4	184.9	100.2	16.4	346.6	170.7	22.8	0∠4. I	2/9.0	37.0	1501	579.3	64.5	4207	1369
6.50	67.12	43.18	11.5	187.6	101.5	16.5	350.3	172.3	23.0	633.6	283.3	37.5	1538	591.3	65.0	4268	1386
6.60	69.16		11.6	190.4		16.6	354.1	173.8	23.2	643.4	286.8	38.0	1575	603.1	65.5	4329	1402
6.70	71.29	45.33	11.7	193.3		16.7	358.0	175.4	23.4	653.8	290.5	38.5	1613	615.0	66.0	4392	1419
6.80	73.48	46.44	11.8		105.4	16.8		177.0	23.6	663.3		39.0	1651	627.1	66.5	4455	1436
6.90	/5.72	47.51	11.9	199.0	106.7	16.9	365.6	178.6	23.8	6/3.7	297.9	39.5	1691	639.2	67.0	4517	1454
												40.0	1730	651.8	67.5	4580	1471
												40.5	1770	664.2	68.0	4645	1488
												41.0	1810	676.6	68.5	4709	1506
												41.5	1851	689.1	69.0	4773	1523
												42.0	1892	701.9	69.5	4839	1541
															70.0	4905	1558
												L			1 ,0.0	-300	1000

4. Significance and Use

- 4.1 The viscosity index is a widely used and accepted measure of the variation in kinematic viscosity due to changes in the temperature of a petroleum product between 40 and 100°C.
- 4.2 A higher viscosity index indicates a smaller decrease in kinematic viscosity with increasing temperature of the lubri-
- 4.3 The viscosity index is used in practice as a single number indicating temperature dependence of kinematic viscosity.

5. Procedure A—For Oils of Viscosity Index Up to and **Including 100**

5.1 Calculation:

- 5.1.1 If the kinematic viscosity of the oils at 100°C is less than or equal to 70 mm²/s (cSt), extract from Table 1 the corresponding values for L and H. Measured values that are not listed, but are within the range of Table 1, may be obtained by linear interpolation. The viscosity index is not defined and may not be reported for oils of kinematic viscosity of less than 2.0 mm^2/s (cSt) at 100°C.
- 5.1.2 If the kinematic viscosity is above 70 mm ²/s (cSt) at 100°C, calculate the values of L and H as follows:

$$L = 0.8353 Y^2 + 14.67 Y - 216 \tag{1}$$

$$L = 0.8353 Y^{2} + 14.67 Y - 216$$

$$H = 0.1684 Y^{2} + 11.85 Y - 97$$
(2)

where:

- L = kinematic viscosity at 40°C of an oil of 0 viscosity index having the same kinematic viscosity at 100°C as the oil whose viscosity index is to be calculated, mm²/s (cSt),
- $Y = \text{kinematic viscosity at } 100^{\circ}\text{C} \text{ of the oil whose viscos-}$ ity index is to be calculated, mm²/s (cSt), and
- $H = \text{kinematic viscosity at } 40^{\circ}\text{C of an oil of } 100 \text{ viscosity}$ index having the same kinematic viscosity at 100°C as the oil whose viscosity index is to be calculated mm²/s
- 5.1.3 Calculate the viscosity index, VI, of the oil as follows:

$$VI = \lceil (L - U)/(L - H) \rceil \times 100 \tag{3}$$

where:

= kinematic viscosity at 40°C of the oil whose viscosity index is to be calculated mm²/s (cSt).

5.1.4 *Calculation Example*:

Measured kinematic viscosity at 40°C of the oil whose viscosity index is to be calculated = $73.30 \text{ mm}^2/\text{s}$ (cSt) kinematic viscosity at 100°C of the oil whose viscosity index is to be calculated = $8.86 \text{ mm}^2/\text{s}$ (cSt)

From Table 1 (by interpolation) L = 119.94

From Table 1 (by interpolation) H = 69.48

Substituting in Eq 3 and rounding to the nearest whole number:

$$VI = [(119.94 - 73.30)/(119.94 - 69.48)] \times 100 = 92.43$$
 (4)

$$VI = 92 (5)$$

5.2 ASTM DS 39b⁹ Viscosity Index Tables for Celsius Temperatures is based on the above calculation and may be used instead of 5.1-5.1.4.

6. Procedure B-For Oils of Viscosity Index of 100 and Greater

6.1 Calculation:

- 6.1.1 If the kinematic viscosity of the oil at 100°C is less than or equal to 70 mm ²/s (cSt), extract the corresponding value for H from Table 1. Measured values that are not listed, but are within the range of Table 1, can be obtained by linear interpolation. The viscosity index is not defined and may not be reported for oils of kinematic viscosity of less than 2.0 mm ²/s (cSt) at 100°C.
- 6.1.2 If the measured kinematic viscosity at 100°C is greater than 70 mm 2 /s (cSt), calculate the value of H as follows:

$$H = 0.1684 Y^2 + 11.85 Y - 97 (6)$$

where:

= kinematic viscosity at 100°C of the oil whose kinematic viscosity is to be calculated, mm²/s (cSt), and

 $H = \text{kinematic viscosity at } 40^{\circ}\text{C} \text{ of an oil of } 100 \text{ viscosity}$ index having the same kinematic viscosity at 100°C as the oil whose viscosity index is to be calculated mm²/s (cSt).

6.1.3 Calculate the viscosity index, VI, of the oil as follows:

$$VI = [((antilog N) - 1)/0.00715] + 100$$
 (7)

where:

$$N = (\log H - \log U)/\log Y,$$
 (8)

$$Y^{N} = H/U \tag{9}$$

where:

 $U = \text{kinematic viscosity at } 40^{\circ}\text{C} \text{ of the oil whose viscosity}$ index is to be calculated mm²/s (cSt).

6.1.4 Calculation Example:

(1) Measured kinematic viscosity at 40°C of the oil whose viscosity index is to be calculated = $22.83 \text{ mm}^{-2}/\text{s}$ (cSt) kinematic viscosity at 100°C of the oil whose viscosity index

is to be calculated = $5.05 \text{ mm}^2/\text{s}$ (cSt) From Table 1 (by interpolation) H = 28.97

Substituting by Eq 8 (by logarithms):

$$N = [(\log 28.97 - \log 22.83)/\log 5.05] = 0.14708$$
 (10)

Substituting in Eq 7 and rounding to the nearest whole number:

$$VI = [((\text{antilog } 0.14708) - 1)/0.00715] + 100$$
 (11)
= $[(1.40307 - 1)/0.00715] + 100 = 156.37$
 $VI = 156$

(2) Measured kinematic viscosity at 40°C of the oil whose viscosity index is to be calculated = 53.47 mm²/s (cSt) kinematic viscosity at 100°C of the oil whose viscosity index is to be calculated = $7.80 \text{ mm}^2/\text{s}$ (cSt)

From Table 1, H = 57.31

Substituting in Eq 8 (by logarithms):

⁹ Available from ASTM Headquarters.