Transformed IS 0

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ISO RECOMMENDATION R 1119

SERIES OF CONICAL TAPERS AND TAPER ANGLES

1st EDITION

September 1969

COPYRIGHT RESERVED

The copyright of ISO Recommendations and ISO Standards belongs to ISO Member Bodies. Reproduction of these documents, in any country, may be authorized therefore only by the national standards organization of that country, being a member of ISO.

For each individual country the only valid standard is the national standard of that country.

Printed in Switzerland

Also issued in French and Russian. Copies to be obtained through the national standards organizations.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/R 1119:1969
https:/standards.iteh.aicatalog/standards/sist/970d8b33-ed5 -4074-a5c2-acdb90de7954/iso-1 1119-1969

BRIEF HISTORY

The ISO Recommendation R 1119, Series of conical tapers and taper angles, was drawn up by Technical Committee ISO/TC 3, Limits and fits, the Secretariat of which is held by the Association Française de Normalisation (AFNOR).

Work on this question led to the adoption of a Draft ISO Recommendation.
In July 1968, this Draft ISO Recommendation (No. 1650) was circulated to all the ISO Member Bodies for enquiry. It was approved, subject to a few modifications of an editorial nature, by the following Member Bodies :

Australia	Israel	South Africa, Rep. of
Belgium	Italy	Spain
Canada	Japan	Sweden
Chile	Korea, Rep. of	Switzerland
Czechoslovakia	Netherlands	Thailand
Denmark	New Zealand	Turkey
France	Norway	U.A.R.
Germany	Poland	United Kingdom
Hungary	Portugal	U.S.S.R.
India	Romania	

No Member Body opposed the approval of the Draft.
The Draft ISO Recommendation was then submitted by correspondence to the ISO Council, which decided, in September 1969, to accept it as an ISO RECOMMENDATION.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/R 1119:1969
https:/standards.iteh.aircatalogrstandards/sist/970d8b33-ed5 -4074-a5c2-acdb90de7954/iso-r-1119-1969

SERIES OF CONICAL TAPERS AND TAPER ANGLES

1. SCOPE

This ISO Recommendation gives a series of cones or conical tapers, ranging from 120° to less than 1°, or ratios from 1:0.289 to 1:500, intended for general use in mechanical engineering.

It applies only to plain conical surfaces, and excludes prismatic pieces, taper threads, bevel gears, etc.
Series 1 and 2, as specified in Table 1 of this ISO Recommendation, should be used in this order of preference, with a view to reducing the range of tools, gauges and measuring instruments required for production of conical parts.

Table 2 should be used only for the particular applications indicated in the last column.
These tables give calculated values for cone angle or rate of taper, to facilitate design, production, and control of conical pieces.

The method of dimensioning conical surfaces on drawings is covered in ISO Recommendation R ...*,
Dimensioning and tolerancing of cones.
2. DEFINITIONS
2.1 Cone angle α. Included angle between generators as measured in the axial plane section.
2.2 Rate of taper C. Ratio of the difference between the diameters of two sections to the distance between these sections, given by the following equation :

$$
C=\frac{D-d}{L}=2 \tan \frac{\alpha}{2}=1: \frac{1}{2} \cot \frac{\alpha}{2}
$$

(see drawing below)
The rate of taper is a dimensionless quantity.
NOTE. - The expression $C=1: 20$ means that a diameter difference $D-d$ of 1 mm occurs in an axial distance L. of 20 mm between diameters D and d and that $\frac{1}{2} \cot \frac{\alpha}{2}=20$.

[^0]
3. VALUES

TABLE 1 - Cones for general applications

Basic values		Calculated values		
Series 1	Series 2	Taper angles $\boldsymbol{\alpha}$		Rate of taper C
120°	75°	-	-	1:0.288 675
90°		-	-	1:0.500 000
		-	-	$1: 0.651613$
60°		-	-	$1: 0.866025$
45°		-	-	1:1.207 107
30°		-	-	1:1.866025
1:3		$18^{\circ} 55^{\prime} 28.7^{\prime \prime}$	18.924644°	-
	1:4	$14^{\circ} 15^{\prime} 0.1^{\prime \prime}$	14.250033°	-
1:5		$11^{\circ} 25^{\prime} 16.3^{\prime \prime}$	11.421186°	-
	1:6	$9^{\circ} 31^{\prime} 38.2^{\prime \prime}$	9.527283°	-
	1:7	$8^{\circ} 10^{\prime} 16.4^{\prime \prime}$	8.171234°	-
	1:8	$7^{\circ} 9^{\prime} 9.6{ }^{\prime \prime}$	7.152669°	-
1:10		$5^{\circ} 43^{\prime} 29.3^{\prime \prime}$	5.724810°	-
	1:12	$4^{\circ} 46^{\prime} 18.8^{\prime \prime}$	4.771888°	-
	1:15	$3^{\circ} 49^{\prime} 5.9^{\prime \prime}$	3.818305°	-
1:20		$2^{\circ} 51^{\prime} 51.1^{\prime \prime}$	2.864192°	-
	1:30	$1^{\circ} 54^{\prime} 34.9{ }^{\prime \prime}$	1.909682°	-
$1: 50$		$1^{\circ} 8^{\prime} 45.2^{\prime \prime}$	1.145877°	-
1:100		$34^{\prime} 22.6^{\prime \prime}$	0.572953°	-
1:200		$17^{\prime} 11.3^{\prime \prime}$	0.286478°	-
1:500		$6^{\prime} 52.5^{\prime \prime}$	0.114591°	-

[^1][^2]TABLE 2 - Cones for particular applications

Basic values	Calculated values			ISORecommendation R	Applications
	Taper angle α		Rate of taper C		
$18^{\circ} 30^{\prime}$	-	-	1:3.070 115	110	
$11^{\circ} 54^{\prime}$	-	-	1:4.797451	326	Winding cones for
$8^{\circ} 40^{\prime}$	-	-	1:6.598442	111-324-325-575	the textile industry
7°	-	-	1:8.174928	112-327	
$7: 24$	$16^{\circ} 35^{\prime} 39.4 \prime$	16.594290°	1:3.428 571	297. 839	$\left\{\left.\begin{array}{l} \text { Machine tool spindles } \\ \text { Tool fits } \end{array} \right\rvert\,\right.$
1:9	$6^{\circ} 21^{\prime} 34.8^{\prime \prime}$	6.359660°	-	*	Battery terminals
1:12.262	$4^{\circ} 40^{\prime} 11.6^{\prime \prime}$	4.669884°	-	239	Jacobs taper No. 2
1:12.972	$4^{\circ} 24^{\prime} 53.1^{\prime \prime}$	4.414746°	--	239	Jacobs taper No. 1
1:15.748	$3^{\circ} 38^{\prime} 13.4^{\prime \prime}$	3.637060°	-	239	Jacobs taper No. 33
1:16.666	$3^{\circ} 26^{\prime} 12.2^{\prime \prime}$	3.436716°	-	594-595-596	Medical purpose equipment
1:18.779	$3^{\circ} 3^{\prime} 1.1 .0^{\prime \prime}$	3.050280°	-	239	Jacobs taper No. 3
1:19.002	$3^{\circ} 0^{\prime} 52.4{ }^{\prime \prime}$	3.014543°	-	296	Morse taper No. 5
1:19.180	$2^{\circ} 59^{\prime} 11.7^{\prime \prime}$	2.986582°	-	296	Morse taper No. 6
1:19.212	$2^{\circ} 58^{\prime} 53.8^{\prime \prime}$	2.981618°	\cdots	296	Morse taper No. 0
1:19.254	$2^{\circ} 58^{\prime} 30.6{ }^{\prime \prime}$	2.975179°	-	296	Morse taper No. 4
1:19.264	$2^{\circ} 58^{\prime} 24.8^{\prime \prime}$	2.973556°	-	239	Jacobs taper No. 6
1:19.922	$2^{\circ} 52^{\prime} 31.5^{\prime \prime}$	2.875406°	-	296	Morse taper No. 3
1:20.020	$2^{\circ} 51^{\prime} 41.0^{\prime \prime}$	2.861377°	-	296	Morse taper No. 2
1:20.047	$2^{\circ} 51^{\prime} 26.7^{\prime \prime}$	2.857417°	-	296	Morse taper No. 1
1:20.288	$2^{\circ} 49^{\prime} 24.7^{\prime \prime}$	2.823537°	-	239	Jacobs taper No. 0
1:23.904	$2^{\circ} 23^{\prime} 47.5^{\prime \prime}$	2.396524°	-	296	Brown \& Sharpe taper No. 1 to 3
1:40	$1^{\circ} 25^{\prime} 15.4 \prime$	$1.420936{ }^{\circ}$	-	**	Anaesthetic equipment

NOTE. - The values in this table should be used only for the particular applications mentioned opposite them; besides this mention, the national standard corresponding to this ISO Recommendation may refer to any other standard in the country concerning this particular application.

[^3]
[^0]: - At present at the stage of draft proposal.

[^1]: NOTE. - For Series 1 , values from 120° to $1: 3$ are approximately in accordance with the $\mathrm{R} 10 / 2$ series of preferred numbers, and values from $1: 5$ to $1: 500$ are in accordance with the $\mathrm{R} 10 / 3$ series*.
 The values of Series 1 are recommended values; if they do not offer sufficient choice, however, values of Series 2 should be taken.

[^2]: - See ISO Recommendation R 3, Preferred numbers - Series of preferred numbers.

[^3]: - Publication 95-3 of the IEC (International Electrotechnical Commission)
 * In preparation by Technical Committee 1SO/TC 121.

