INTERNATIONAL STANDARD

Second edition 2004-12-15

AMENDMENT 6 2005-09-01

Information technology — Coding of audio-visual objects —

Part 4: Conformance testing

iTeh STAMENDMENT 6: Advanced Video Coding conformance (standards.iteh.ai)

Is Technologies de l'information — Codage des objets audiovisuels —

https://standards.iteh.**#artie g**: **Essai** de conformitéeaee-400b-8dba-78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005 AMENDEMENT 6: Conformité de codage vidéo avancé

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 14496-4:2004/Amd 6:2005</u> https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

© ISO/IEC 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Page

Forewordi		iv
Introd	uction	v
10	Advanced Video Coding	1
10.1	Scope	1
10.2	Normative references	1
10.3	Definitions	2
10.4	Abbreviations	2
10.5	Conventions	2
10.6	Conformance for ITU-T Rec. H.264 ISO/IEC 14496-10	2

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 14496-4:2004/Amd 6:2005</u> https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 6 to ISO/IEC 14496-4:2004 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

(standards.iteh.ai)

ISO/IEC 14496-4:2004/Amd 6:2005 https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

Introduction

This Recommendation | International Standard establishes conformance test requirements for conformance to ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video Coding.

This specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

This document is the text of the ITU-T Rec. H.264.1 | ISO/IEC 14496-4 conformance test of ITU-T Rec. H.264 | ISO/IEC 14496-10 video bitstreams and decoders. This specification is specifically applied to ITU-T Rec. H.264 | ISO/IEC 14496-10, Advanced Video Coding.

The following subclauses specify the normative tests for verifying conformance of ITU-T Rec. H.264 | 14496-10 video bitstreams and video decoders. These normative tests make use of test data (bitstream test suites) provided as an electronic annex to this document, and the reference software decoder specified in ITU-T Rec. H.264.2 | ISO/IEC 14496-5:2001/Amd.6 with source code available in electronic format.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 14496-4:2004/Amd 6:2005</u> https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 14496-4:2004/Amd 6:2005</u> https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

Information technology — Coding of audio-visual objects —

Part 4: Conformance testing

Amendment 6: Advanced Video Coding conformance

Add the following after clause 9:

10 Advanced Video Coding

10.1 Scope

This clause specifies tests designed to verify whether bitstreams and decoders meet normative requirements specified in ITU-T Rec. H.264 | ISO/IEC 14496-10. An encoder can claim conformance to ITU-T Rec. H.264 | ISO/IEC 14496-10 if the bitstreams that it generates are conforming bitstreams.

Characteristics of coded bitstreams and decoders are defined for ITU-T Rec. H.264 | ISO/IEC 14496-10. The characteristics of a bitstream define the subset of the standard that is exploited in the bitstream. Examples are the applied values or range of the picture size and bit rate parameters. Decoder characteristics define the properties and capabilities of the applied decoding process. The capabilities of a decoder specify which bitstreams the decoder can decode and reconstruct, by defining the subset of the ITU-T Rec. H.264 | ISO/IEC 14496-10 standard that may be exploited in the bitstreams that it will decode. A bitstream can be decoded by a decoder if the characteristics of the bitstream are within the subset of the standard specified by the decoder capabilities.

Procedures are described for testing conformance of bitstreams and decoders to the requirements defined in ITU-T Rec. H.264 | ISO/IEC 14496-10. Given the set of characteristics claimed, the requirements that shall be met are fully determined by ITU-T Rec. H.264 | ISO/IEC 14496-10. This clause summarizes the requirements, cross references them to characteristics, and defines how conformance with them can be tested. Guidelines are given on constructing tests to verify bitstream and decoder conformance. This clause gives guidelines on how to construct bitstream test suites to check or verify decoder conformance. In addition, the test bitstreams implemented according to those guidelines are provided as an electronic annex to this document.

10.2 Normative references

10.2.1 General

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

10.2.2 Identical Recommendations | International Standards

– None.

10.2.3 Paired Recommendations | International Standards equivalent in technical content

- ITU-T Recommendation H.264 (2004), Advanced video coding for generic audiovisual services.
 ISO/IEC 14496-10, Information technology Coding of audiovisual objects Part 10: Advanced video coding.
- ITU-T Recommendation H.264.2 (2004), Advanced video coding reference software.
 ISO/IEC 14496-5, Information technology Coding of audiovisual objects Part 5: Reference software.

10.2.4 Additional references

– None.

10.3 Definitions

10.3.1 For the purposes of this document, the terms, definitions, abbreviations and symbols specified in bitstream: An ITU-T Rec. H.264 | ISO/IEC 14496-10 video bitstream. A bitstream may contain IDR, I, P, B, SI, and SP slices.

10.3.2 decoder: An ITU-T Rec. H.264 | ISO/IEC 14496-10 video decoder, i.e., an embodiment of the decoding process specified by ITU-T Rec. H.264 | ISO/IEC 14496-10. The decoder does not include the display process, which is outside the scope of this standard. (Standards.iteh.ai)

10.3.3 reference software decoder: The software decoders contained in ITU-T Rec. H.264.2 | ISO/IEC 14496-5. <u>ISO/IEC 14496-4:2004/Amd 6:2005</u> https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-

10.4 Abbreviations

For the purposes of this Recommendation | International Standard, relevant abbreviations are specified in clause 4 of ITU-T Rec. H.264 | ISO/IEC 14496-10.

78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

10.5 Conventions

For the purposes of this Recommendation | International Standard, relevant conventions are specified in clause 5 in ITU-T Rec.264 | ISO/IEC 14496-10.

10.6 Conformance for ITU-T Rec. H.264 | ISO/IEC 14496-10

10.6.1 Introduction

The following subclauses specify the normative tests for verifying conformance of video bitstreams as well as decoders. Those normative tests make use of test data (bitstream test suites) provided as an electronic annex to this document, and the reference software decoder specified in ITU-T Rec. H.264.2 | ISO/IEC 14496-5 with source code included in electronic format.

10.6.2 Bitstream conformance

The bitstream conformance of ITU-T Rec. H.264 | ISO/IEC 14496-10 is specified by subclause C.3 in Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10.

10.6.3 Decoder conformance

The decoder conformance of ITU-T Rec. H.264 | ISO/IEC 14496-10 is specified by subclause C.4 in Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10.

10.6.4 Procedure to test bitstreams

A bitstream that claims conformance with this standard shall pass the following normative test:

The bitstream shall be decoded by processing it with the reference software decoder specified in ITU-T Rec. H.264.2 | ISO/IEC 14496-5. When processed by the reference software decoder, the bitstream shall not cause any error or non-conformance messages to be reported by the reference software decoder. This test should not be applied to bitstreams that are known to contain errors introduced by transmission, as such errors are highly likely to result in bitstreams that lack conformance to ITU-T Rec. H.264 | ISO/IEC 14496-10.

Successfully passing the reference software decoder test provides only a strong presumption that the bitstream under test is conforming to the video layer, i.e. that it does indeed meet all the requirements for the video layer (except Annexes C, D and E) specified in ITU-T Rec. H.264 | ISO/IEC 14496-10 that are tested by the reference software decoder.

Additional tests may be necessary to more thoroughly check that the bitstream properly meets all the requirements specified in ITU-T Rec. H.264 | ISO/IEC 14496-10 including the HRD conformance (based on Annexes C, D and E). These complementary tests may be performed using other video bitstream verifiers that perform more complete tests than those implemented by the reference software decoder.

ITU-T Rec. H.264 | ISO/IEC 14496-10 contains several informative recommendations that are not an integral part of that Recommendation | International Standard. When testing a bitstream for conformance, it may also be useful to test whether or not the bitstream follows those recommendations.

To check correctness of a bitstream, it is necessary to parse the entire bitstream and to extract all the syntactic elements and other values derived from those/syntactic elements and used by the decoding process specified in ITU-T RecpH/26441SO/IEC 14496410[ards/sist/1990a92a-eace-400b-8dba-

78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005 t necessarily perform all stages of the decoding process

A verifier may not necessarily perform all stages of the decoding process described in ITU-T Rec. H.264 | ISO/IEC 14496-10 in order to verify bitstream correctness. Many tests can be performed on syntax elements in a state prior to their use in some processing stages.

10.6.5 Procedure to test decoder conformance

10.6.5.1 Conformance bitstreams

In this subclause, except where stated otherwise, the term "bitstream" refers to a conforming ITU-T Rec. H.264 | ISO/IEC 14496-10 video bitstream (as defined in this document), that has values of profile_idc, level_idc, and constraint_setX_flag values (where X is a number in the range of 0 to 2, inclusive) corresponding to a set of specified constraints on a bitstream for which a decoder conforming to a specified profile and level is required in Annex A of ITU-T Rec. H.264 | ISO/IEC 14496-10 to properly perform the decoding process.

10.6.5.2 Contents of bitstream file

The conformance bitstreams are included in this specification as an electronic attachment. The following information is included in a single zipped file for each such bitstream.

- ITU-T Rec. H.264 | ISO/IEC 14496-10 video bitstream
- Reconstructed pictures or hashes of decoded pictures
- Short description of the bitstream
- Trace file (the bitstream in ASCII format)

10.6.5.3 Requirements on output of the decoding process and timing

Two classes of decoder conformance are specified:

- Output order conformance, and
- Output timing conformance

The output of the decoding process is specified by clause 8 and Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10.

For output order conformance, it is a requirement that all of the decoded pictures specified for output in Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10 shall be output by a conforming decoder in the specified order and that the values of the decoded samples in all of the pictures that are output shall be (exactly equal to) the values specified in clause 8 of ITU-T Rec. H.264 | ISO/IEC 14496-10.

For output timing conformance, it is a requirement that a conforming decoder shall also output the reconstructed samples at the rates and times specified in Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10.

The display process, which ordinarily follows the output of the decoding process, is outside the scope of this Recommendation | International Standard.

10.6.5.4 Recommendations (informative)

In addition to the requirements, it is desirable that conforming decoders implement various informative recommendations defined in ITU-T Rec. H.264 | ISO/IEC 14496-10 that are not an integral part of that Recommendation | International Standard. This subclause lists some of these recommendations.

It is recommended that a conforming decoder be able to resume the decoding process as soon as possible after the loss or corruption of part of a bitstream. In most cases it is possible to resume decoding at the next start code or slice header. It is recommended that a conforming decoder be able to perform concealment for the macroblocks or video packets for which all the coded data has not been received.

78b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

10.6.5.5 Static tests for output order conformance

Static tests of a video decoder require testing of the reconstructed samples. This subclause will explain how this test can be accomplished when the reconstructed samples at the output of the decoding process are available. It may not be possible to perform this type of test with a production decoder (due to the lack of an appropriate accessible interface in the design at which to perform the test). In that case this test should be performed by the manufacturer during the design and development phase. Static tests are used for testing the decoding process. The test will check that the values of the samples reconstructed by the decoder under test shall be identical to the values of the reference samples attached to the bitstream file, or shall be identical to the bitstream file. When a hash of the values of the samples of the decoded pictures is attached to the bitstream file, a corresponding hash operation performed on the values of the samples of the decoder under test shall produce the same results.

10.6.5.6 Dynamic tests for output timing conformance

Dynamic tests are applied to check that all the reconstructed samples are output and that the timing of the output of the decoder's reconstructed samples conforms to the specification of clause 8 and Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10, and to verify that the HRD models (as defined by the CPB and DPB specification in Annex C of ITU-T Rec. H.264 | ISO/IEC 14496-10) are not violated when the bits are delivered at the proper rate.

The dynamic test is often easier to perform on a complete decoder system, which may include a systems decoder, a video decoder and a display process. It may be possible to record the output of the display process and to check that display order and timing of fields or frames are correct at the output of the display process. However, since the display process is not within the normative scope of ITU-T Rec. H.264 | ISO/IEC 14496-10, there may be cases where the output of the display process differs in timing or value even though the video

decoder is conforming. In this case, the output of the video decoder itself (before the display process) would need to be captured in order to perform the dynamic tests on the video decoder. In particular the field or frame order and timing shall be correct.

If buffering period SEI and picture timing SEI are included in the test bitstream, HRD conformance shall be verified using the values of initial_cpb_removal_delay, initial_cpb_removal_delay_offset, cpb_removal_delay and dpb_removal_delay that are included in the bitstream.

If buffering period SEI and picture timing SEI are not included in the bitstream, the following inferences shall be made to generate the missing parameters:

- fixed_frame_rate_flag shall be inferred to be 1.
- low_delay_hrd_flag shall be inferred to be 0.
- cbr_flag shall be inferred to be 0.
- The frame rate of the stream shall be inferred to be the frame rate value specified in Table AMD9-1. If this is missing, then a frame rate of either 25 or 30000 ÷ 1001 can be inferred.
- time_scale shall be set to 90,000 and the value of num_units_in_tick shall be computed based on field rate (twice the frame rate).
- The bit rate of the bitstream shall be inferred to be the maximum value for the level defined in Table A-1 in ITU-T Rec. H.264 | ISO/IEC 14496-10.
- CPB and DPB sizes shall be inferred to be the maximum value for the level defined in Table A-1 in ITU-T Rec. H.264 | ISO/IEC 14496-10.

With the above inferences, the HRD shall be operated as follows EVIEW

- The CPB is filled starting at time t = 0, until it is full, before removal of the first access unit. This means that the initial_cpb_removal_delay shall be inferred to be equal to the total CPB buffer size divided by the bit rate divided by 90000 (rounded downwards) and initial_cpb_removal_delay_offset shall be inferred to be equal to zero.
- The first access unit is removed at time t = initial cpb_removal_delay ÷ 90000 and subsequent access units are removed at intervals based on the frame distance, i.e. cpb_removal_delay = 2 * (90000 ÷ num_units_in_tick) or the field distance i.e. cpb_removal_delay = (90000 / num_units_in_tick), depending whether the access unit is coded as a frame picture or field picture.
- Using these inferences, the CPB will not overflow or underflow and the DPB will not overflow.

10.6.5.7 Decoder conformance test of a particular profile-and-level

In order for a decoder of a particular profile-and-level to claim output order conformance to the standard as described by this specification, the decoder shall successfully pass the static test defined in subclause 10.6.5.5 with all the bitstreams of the normative test suite specified for testing decoders of this particular profile-and-level.

In order for a decoder of a particular profile and level to claim output timing conformance to the standard as described by this specification, the decoder shall successfully pass both the static test defined in subclause 10.6.5.5 and the dynamic test defined in subclause 10.6.5.6 with all the bitstreams of the normative test suite specified for testing decoders of this particular profile-and-level. Table AMD9-1 define the normative test suites for each profile-and-level combination. The test suite for a particular profile-and-level combination is the list of bitstreams that are marked with an 'X' in the column corresponding to that profile-and-level combination.

'X' indicates that the bitstream is designed to test both the dynamic and static conformance of the decoder.

The bitstream specification indicates the test bitstream specification used for each bitstream.

10.6.6 Specification of the test bitstreams

Some characteristics of each bitstream listed in Table AMD9-1 are described in the subclauses of this subclause. In Table AMD9-1, the value "29.97" shall be interpreted as an approximation of an exact value of 30000 ÷ 1001.

10.6.6.1 Test Bitstreams – General

10.6.6.1.1 Test bitstream #AVCNL-1, #AVCNL-2

Specification: All slices are coded as I slices. Each picture contains only one slice. disable_deblocking_filter_idc is equal to 1, specifying disabling of the deblocking filter process. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 0. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of I slices.

Purpose: Check that the decoder can properly decode I slices.

10.6.6.1.2 Test bitstream #AVCNL-3, #AVCNL-4

Specification: All slices are coded as I or P slices. Each picture contains only one slice. disable_deblocking_filter_idc is equal to 1, specifying disabling of the deblocking filter process. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 0. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of P slices. (standards.iteh.ai)

Purpose: Check that the decoder can properly decode P slices. And 62005

https://standards.iteh.ai/catalog/standards/sist/1990a92a-eaee-400b-8dba-**10.6.6.1.3 Test bitstream #AVCBA₇4**b9b440da8a/iso-iec-14496-4-2004-amd-6-2005

Specification: All slices are coded as I slices. Each picture contains only one slice. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 0. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of I slices with the deblocking filter process enabled.

Purpose: Check that the decoder can properly decode I slices with the deblocking filter process enabled.

10.6.6.1.4 Test bitstream #AVCBA-2

Specification: All slices are coded as I slices. Each picture contains only one slice. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 2. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of I slices with the deblocking filter process enabled.

Purpose: Check that the decoder can properly decode I slices with the deblocking filter process enabled.

10.6.6.1.5 Test bitstream #AVCBA-3

Specification: All slices are coded as I or P slices. Each picture contains only one slice. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 0. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of P slices with the deblocking filter process enabled.

Purpose: Check that the decoder can properly decode P slice with the deblocking filter process enabled.

10.6.6.1.6 Test bitstream #AVCBA-4

Specification: All slices are coded as I or P slices. Each picture contains only one slice. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 2. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of P slices with the deblocking filter process enabled.

Purpose: Check that the decoder can properly decode P slices with the deblocking filter process enabled.

10.6.6.1.7 Test bitstream #AVCBA-5, #AVCBA-6

Specification: All slices are coded as I or P slices. Each picture contains only one slice. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 0. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of P slices with the deblocking filter process enabled.

Purpose: Check that the decoder can properly decode P slices with the deblocking filter process enabled.

iTeh STANDARD PREVIEW

10.6.6.1.8 Test bitstream #AVCBA-7, #AVCBA-8

(standards.iteh.ai)

Specification: All slices are coded as I or P slices. Each picture contains only one slice. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 2. Macroblock/sub-macroblock partition size is limited to 8x8 and above. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 J ISO/IEC 14496-10.

Functional stage: Decoding of P slices with the deblocking filter process enabled.

Purpose: Check that the decoder can properly decode P slices with the deblocking filter process enabled.

10.6.6.1.9 Test bitstream #AVCMQ-1

Specification: All slices are coded as I slices. Each picture contains only one slice. disable_deblocking_filter_idc is equal to 1, specifying disabling of the deblocking filter process. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 1. mb_qp_delta is equal to a non-zero value to change the quantizer scale at each MB. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of I slices with mb_qp_delta not equal to 0.

Purpose: Check that the decoder can properly decode I slices with mb_qp_delta not equal to 0.

10.6.6.1.10 Test bitstream #AVCMQ-2

Specification: All slices are coded as I or P slices. Each picture contains only one slice. disable_deblocking_filter_idc is equal to 1, specifying disabling of the deblocking filter process. entropy_coding_mode_flag is equal to 0, specifying the CAVLC parsing process. pic_order_cnt_type is equal to 1. mb_qp_delta is equal to a non-zero value to change the quantizer scale at each MB. All NAL units are encapsulated into the byte stream format specified in Annex B in ITU-T Rec. H.264 | ISO/IEC 14496-10.

Functional stage: Decoding of P slices with mb_qp_delta not equal to 0.

Purpose: Check that the decoder can properly decode P slices with mb_qp_delta not equal to 0.