

Designation: D 4485 - 05

An American National Standard

Standard Specification for Performance of Engine Oils¹

This standard is issued under the fixed designation D 4485; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

INTRODUCTION

This specification covers all the currently active American Petroleum Institute (API) engine oil performance categories that have been defined in accordance with the ASTM consensus process. There are other organizations with specifications not subject to the ASTM consensus process, such as the International Lubricant Standardization and Approval Committee (ILSAC), and the Association des Constructeurs Europeans d' Automobiles (ACEA). Certain of these specifications, which have been defined primarily by the use of current ASTM test methods have also been included in the Appendix of this document for information.

In the ASTM system, a specific API designation is assigned to each category. The system is open-ended, that is, new designations are assigned for use with new categories as each new set of oil performance characteristics are defined. Oil categories may be referenced by engine builders in making lubricant recommendations, and used by lubricant suppliers and customers in identifying products for specific applications. Where applicable, candidate oil programs are conducted in accordance with the American Chemistry Council (ACC) Petroleum Additives Product Approval Code of Practice.

Other service categories not shown in this document have historically been used to describe engine oil performance (SA, SB, SC, SD, SE, SF, SG and CA, CB, CC, CD, CD-II, CE) (see 3.1.2). SA is not included because it does not have specified engine performance requirements. SG is not included because it was a category that could not be licensed for use in the API Service Symbol after December 31, 1995. The others are not included because they are based on test methods for which engine parts, test fuel, or reference oils, or a combination thereof, are no longer available. Also, the ASTM 5-Car and Sequence VI Procedures are obsolete and have been deleted from the category Energy Conserving and Energy Conserving II (defined by Sequence VI). Information on excluded older categories and obsolete test requirements can be found in SAE J183.

1. Scope

- 1.1 This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment.
- 1.2 This specification is not intended to cover engine oil applications such as outboard motors, snowmobiles, lawn mowers, motorcycles, railroad locomotives, or ocean-going vessels.

- 1.3 This specification is based on engine test results that generally have been correlated with results obtained on reference oils in actual service engines operating with gasoline or diesel fuel. As it pertains to the API SL engine oil category, it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil categories prior to 2000. It should be recognized that not all aspects of engine oil performance are evaluated by the engine tests in this specification. In addition, when assessing oil performance, it is desirable that the oil be evaluated under actual operating conditions.
- 1.4 This specification includes bench tests that help evaluate some aspects of engine oil performance not covered by the engine tests in this specification.

¹ This specification is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.B0 on Automotive Lubricants.

Current edition approved Feb. 1, 2005. Published March 2005. Originally approved in 1985. Last previous edition approved in 2004 as D 4485 – 04.

- 1.5 The values stated in either SI units or other units shall be regarded separately as standard. The values given in parentheses are for information only.
- 1.6 The test procedures referred to in this specification that are not yet standards are listed in Table 1.

TABLE 1 Test Procedures

Test Procedure	ASTM Publications ^A
Sequence IIIG TEOST MHT-4 T-6 T-7 Elastomer Compatibility	under development ^B under development ^C RR: D02-1219 ^D RR: D02-1220 ^E under development ^F

^A Research Reports are available from ASTM International Headquarters. Request by Research Report No.

2. Referenced Documents

- 2.1 ASTM Standards: ²
- D 92 Test Method for Flash and Fire Points by Cleveland Open Cup
- D 93 Test Methods for Flash Point by Pensky-Martens Closed Cup Tester
- D 130 Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test
- D 892 Test Method for Foaming Characteristics of Lubricating Oils
- D 2887 Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography
- D 3244 Practice for Utilization of Test Data to Determine Conformance with Specifications
- D 4684 Test Method for Determination of Yield Stress and Apparent Viscosity of Engine Oils at Low Temperature
- D 4951 Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry
- D 5119 Test Method for Evaluation of Automotive Engine Oils in the CRC L-38 Spark-Ignition Engine³
- D 5133 Test Method for Low Temperature, Low Shear Rate, Viscosity/Temperature Dependence of Lubricating Oils Using a Temperature-Scanning Technique
- D 5185 Test Method for Determination of Additive Elements, Wear Metals, and Contaminants in Used Lubricating Oils and Determination of Selected Elements in Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)

- D 5290 Test Method for Measurement of Oil Consumption, Piston Deposits, and Wear in a Heavy-Duty High-Speed Diesel Engine—NTC-400 Procedure³
- D 5293 Test Method for Apparent Viscosity of Engine Oils Between -5 and -35°C Using the Cold-Cranking Simulator
- D 5302 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation and Wear in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions³
- D 5480 Test Method for Engine Oil Volatility by Gas Chromatography³
- D 5533 Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIE, Spark-Ignition Engine³
- D 5800 Test Method for Evaporation Loss of Lubricating Oils by the Noack Method
- D 5844 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Rusting (Sequence IID)³
- D 5862 Test Method for Evaluation of Engine Oils in the Two-Stroke Cycle Turbo-Supercharged 6V92TA Diesel Engine
- D 5966 Test Method for Evaluation of Engine Oils for Roller Follower Wear in Light-Duty Diesel Engine
- D 5967 Test Method for Evaluation of Diesel Engine Oils in the T-8 Diesel Engine
- D 5968 Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 121°C
- D 6082 Test Method for High Temperature Foaming Characteristics of Lubricating Oils
- D 6202 Test Method for Automotive Engine Oils on the Fuel Economy of Passenger Cars and Light-Duty Trucks in the Sequence VIA Spark Ignition Engine
- D 6278 Test Method for Shear Stability of Polymer-Containing Fluids Using a European Diesel Injector Apparatus
- D 6335 Test Method for Determination of High Temperature Deposits by Thermo-Oxidation Engine Oil Simulation Test
- D 6417 Test Method for Estimation of Engine Oil Volatility by Capillary Gas Chromatography
- D 6483 Test Method for Evaluation of Diesel Engine Oils in T-9 Diesel Engine
- D 6557 Test Method for Evaluation of Rust Preventive Characteristics of Automotive Engine Oils
- D 6593 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions
- D 6594 Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 135°C
- D 6618 Test Method for Evaluation of Engine Oils in Diesel Four-Stroke Cycle Supercharged 1M-PC Single Cylinder Oil Test Engine
- D 6681 Test Method for Evaluation of Engine Oils in a High Speed, Single-Cylinder Diesel Engine-Caterpillar IP Test Procedure

^B Sequence IIIG oil thickening, piston deposits, and valve train wear test.

 $^{^{\}it C}$ Thermo-Oxidation Engine Oil Simulation Test (MHT-4)-high temperature deposits test.

^D Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Mack T-6.

E Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Mack T-7.

 $[\]ensuremath{^{F}}$ The Elastomer Compatibility Test; initial development by D11.15, to be completed by D02.B0.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Withdrawn.

- D 6709 Test Method for Evaluation of Automotive Engine Oils in the Sequence VIII Spark-Ignition Engine (CLR Oil Test Engine)
- D 6750 Test Methods for Evaluation of Engine Oils in a High-Speed, Single-Cylinder Diesel Engine—1K Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur)
- D 6794 Test Method for Measuring the Effect on Filterability of Engine Oils After Treatment with Various Amounts of Water and a Long (6–h) Heating Time
- D 6795 Test Method for Measuring the Effect on Filterability of Engine Oils After Treatment with Water and Dry Ice and a Short (30–min) Heating Time
- D 6837 Test Method for Measurement of the Effects of Automotive Engine Oils on the Fuel Economy of Passenger Cars and Light–Duty Trucks in the Sequence VIB Spark-Ignition Engine
- D 6838 Test Method for Cummins M11 High Soot Test
- D 6891 Test Method for Evaluation of Automotive Engine Oils in the Sequence IVA Spark-Ignition Engine
- D 6894 Test Method for Evaluation of Aeration Resistance of Engine Oils in Direct-Injected Turbocharged Automotive Diesel Engine
- D 6922 Test Method for Determination of Homogeneity and Miscibility in Automotive Engine Oils
- D 6923 Test Method for Evaluation of Engine Oils in a High-Speed, Single-Cylinder Diesel Engine—Caterpillar 1R Test Procedure
- D 6975 Test Method for Cummins M11 EGR Test
- D 6984 Test Method for Evaluation of Automotive Engine
 Oils in the Sequence IIIF, Spark-Ignition Engine
- D 6987 Test Method for Evaluation of Diesel Engine Oils in T-10 Exhaust Gas Recirculation Diesel Engine
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications (4.8)
- E 178 Practice for Dealing with Outlying Observations
- 2.2 Society of Automotive Engineers Standards:⁴
- SAE J183 Engine Oil Performance and Engine Service Classification
- SAE J300 Engine Oil Classification
- SAE J1423 Passenger Car and Light-Duty Truck Energy-Conserving Engine Oil Classification
- 2.3 American Petroleum Institute Publication:⁵
- API 1509 Engine Oil Licensing and Certification System (EOLCS)
- 2.4 Government Standard:⁶
- DOD CID A-A-52039A (SAE 5W-30, 10W-30, and 15W-40)
- 2.5 American Chemical Council Code:⁷
- ACC Petroleum Additives Product Approval Code of Practice

3. Terminology

- 3.1 Definitions:
- 3.1.1 *automotive*, *adj*—descriptive of equipment associated with self-propelled machinery, usually vehicles driven by internal combustion engines.
- 3.1.2 *category*, *n*—*in engine oils*, a designation such as SH, SJ, CF-4, CF, CF-2, CG-4, Energy Conserving, and so forth, for a given level of performance in specified engine tests.
- 3.1.3 *classification*, *n*—*in engine oils*, the systematic arrangement into categories in accordance with different levels of performance in specified engine tests.
- 3.1.4 *engine oil*, *n*—a liquid that reduces friction and wear between the moving parts within an engine, and also serves as a coolant.
- 3.1.4.1 *Discussion*—It can contain additives to enhance certain properties. Inhibition of engine rusting, deposit formation, valve train wear, oil oxidation, and foaming are examples.
- 3.1.5 heavy duty, adj—in internal combustion engine operation, characterized by average speeds, power output, and internal temperatures that are generally close to the potential maximums.
- 3.1.6 heavy-duty engine, n—in internal combustion engine types, one that is designed to allow operation continuous at or close to its peak output.
- 3.1.6.1 *Discussion*—This type of engine is typically installed in large trucks and buses as well as farm, industrial, and construction equipment.
- 3.1.7 *light-duty*, *adj—in internal combustion engine operation*, characterized by average speeds, power output, and internal temperatures that are generally much lower than the potential maximums.
- 3.1.8 *light-duty engine*, *n*—*in internal combustion engine types*, one that is designed to be normally operated at substantially less than its peak output.
- 3.1.8.1 *Discussion*—This type of engine is typically installed in automobiles and small trucks, vans, and buses.
- 3.1.9 *lugging*, *adj—in internal combustion engine operation*, characterized by a combined mode of relatively lowspeed and high-power output.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *C category*, *n*—the group of engine oils that are intended primarily for use in diesel and certain gasoline-powered vehicles.
- 3.2.2 Energy Conserving category, n—the group of engine oils that have demonstrated fuel economy benefits and are intended primarily for use in automotive gasoline engine applications, such as passenger cars, light-duty trucks, and vans.
- 3.2.3 *S category*, *n*—the group of engine oils that are intended primarily for use in automotive gasoline engine applications, such as passenger cars, light-duty trucks, and vans.

4. Performance Classification

4.1 Automotive engine oils are classified in three general arrangements, as defined in 3.2; that is, S, C, and Energy Conserving. These arrangements are further divided into categories with performance measured as follows:

 $^{^4}$ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096–0001.

⁵ Available from American Petroleum Institute (API), 1220 L St. NW, Washington, DC 20005.

⁶ Available from U.S. Government Printing Office Superintendent of Documents, 732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401.

⁷ Available from American Chemical Council, 1300 Wilson Blvd., Arlington, VA 22209.

- 4.1.1 *SH*—Oil meeting the performance requirements measured in the following gasoline engine tests and bench tests:
- 4.1.1.1 Test Method D 5844, the Sequence IID gasoline engine test, has been correlated with vehicles used in short-trip service prior to 1978, particularly with regard to rusting. (An alternative is Test Method D 6557, the Ball Rust Test.)
- 4.1.1.2 Test Method D 5533, the Sequence IIIE gasoline engine test, has been correlated with vehicles used in high-temperature service prior to 1988, particularly with regard to oil thickening and valve train wear. (Alternatives are Test Method D 6984, the Sequence IIIF test, or the Sequence IIIG test.)
- 4.1.1.3 Test Method D 5302, the Sequence VE gasoline engine test, has been correlated with vehicles used in stop-and-go service prior to 1988,¹⁰ particularly with regard to sludge and valve train wear. (An alternative is the combination of Test Method D 6593, the Sequence VG test, and Test Method D 6891, the Sequence IVA test.)
- 4.1.1.4 Test Method D 5119, the L-38 gasoline engine test, is used to measure copper-lead bearing weight loss under high-temperature operating conditions. (An alternative is Test Method D 6709, the Sequence VIII test.)
- (1) Test Method D 5119 (or Test Method D 6709) is also used to determine the ability of an oil to resist permanent viscosity loss due to shearing in an engine.
- 4.1.1.5 In addition to passing performance in the engine tests, specific viscosity grades shall also meet bench test requirements (see Table 2), which are discussed in the following subsections:
- (1) The volatility of engine oils relates to engine oil consumption.
- (2) Test Method D 6795, the Engine Oil Filterability Test (EOFT) screens for the formation of precipitates that can cause oil filter plugging.
- (3) Phosphorus compounds can cause glazing of automotive catalysts and exhaust gas oxygen sensors and, thereby, deactivate them. Control of the phosphorus level in the engine oil may reduce this tendency.
- (4) The flash point can indicate if residual solvents and low-boiling fractions remain in the finished oil.
- (5) Foaming in engine oil can cause valve lifter collapse and a loss of lubrication due to the presence of air in the oil. Test Methods D 892 and D 6082 empirically rate the foaming tendency and stability of oils.
- (6) Test Method D 6922, the H and M Test indicates the compatibility of an oil with standard test oils.
- 4.1.1.6 Licensing of the API SH category requires that candidate oils meet the performance requirements in this specification, and that the oils be tested in accordance with the protocols described in the ACC Petroleum Additives Product Approval Code of Practice. The methodology detailed in the
- ⁸ Available from ASTM International in STP 3151 (Part 1). Also available from the Society of Automotive Engineers as Technical Paper No. 780931.⁴
- ⁹ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1225.
- ¹⁰ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1226.

- ACC Code will help ensure that an engine oil meets its intended performance specification. (See Appendix X3 for more information.)
- 4.1.2 *SJ*—Oil meeting the performance requirements measured in the following gasoline engine tests and bench tests:
- 4.1.2.1 Test Method D 5844, the Sequence IID, gasoline engine test has been correlated with vehicles used in short-trip service prior to 1978, particularly with regard to rusting. (An alternative is Test Method D 6557, the Ball Rust Test.)
- 4.1.2.2 Test Method D 5533, the Sequence IIIE gasoline engine test, has been correlated with vehicles used in high-temperature service prior to 1988, particularly with regard to oil thickening and valve train wear. (Alternatives are Test Method D 6984, the Sequence IIIF test, or the Sequence IIIG test.)
- 4.1.2.3 Test Method D 5302, the Sequence VE gasoline engine test, has been correlated with vehicles used in stop-and-go service prior to 1988, particularly with regard to sludge and valve train wear. (An alternative is the combination of Test Method D 6593, the Sequence VG test, and Test Method D 6891, the Sequence IVA test.)
- 4.1.2.4 Test Method D 5119, the L-38 gasoline engine test, is used to measure copper-lead bearing weight loss under high-temperature operating conditions. (An alternative is Test Method D 6709, the Sequence VIII test.)
- (1) Test Method D 5119 (or Test Method D 6709) is also used to determine the ability of an oil to resist permanent viscosity loss due to shearing in an engine.
- 4.1.2.5 In addition to passing performance in the engine tests, specific viscosity grades shall also meet bench test requirements (see Table 2), which are discussed in the following subsections:
- (1) The volatility of engine oils is one of several factors that relates to engine oil consumption.
- (2) Test Method D 6795, the EOFT screens for the formation of precipitates and gels that form in the presence of water and can cause oil filter plugging.
- (3) Phosphorus compounds in excessive amounts can cause glazing of automotive catalysts and exhaust gas oxygen sensors and, thereby, deactivate them. Control of the phosphorus level in the engine oil may reduce this tendency.
- (4) The flash point may indicate if residual solvents and low-boiling fractions remain in the finished oil.
- (5) Excessive foaming in engine oil can cause valve lifter collapse and a loss of lubrication due to the presence of air in the oil. Test Methods D 892 and D 6082 empirically rate the foaming tendency and stability of oils.
- (6) Test Method D 6922, the H and M Test indicates the compatibility of an oil with standard test oils.
- (7) Newer engines designed to provide increased power and improved driveability and to meet future federal emissions and fuel economy requirements may be sensitive to internal deposits caused by elevated engine operating temperatures. Test Method D 6335, the TEOST test, may be useful in determining the deposit control of oils recommended for these engines.

TABLE 2 S Engine Oil Categories

		API SH Category				
Engine Test Method	Rated of	or Measured Parameter	Primary	Performance Criteria		
D 5844 ^{A,B}	Average engine	rust rating, ^C min		8.5		
(Sequence IID)	Number stuck	Number stuck lifters		none		
or D 6557 ^A	Average gray va	Average gray value, min		100		
(Ball Rust Test)						
D 5533 ^{B,D} (Sequence IIIE)		kinematic viscosity		64		
	increase at 40°C			0.0		
		sludge rating, ^E min		9.2		
	Average piston s	skirt varnish rating, ^F min land deposit rating, ^F min		8.9 3.5		
	Lifter sticking	iand deposit rating, min		none		
	Scuffing and we	ar		TIONE		
	Cam or lifter s			none		
	Cam plus lifter	•				
	Average, ma	ax		30		
	Maximum, r	nax		64		
_	Ring sticking (oil			none		
or D 6984 (Sequence IIIF) ^D		sity, % increase at 40°C, max		325 ^H		
		skirt varnish rating, F min		8.5'		
		deposit rating, min		3.2 ¹ 20 ^{1,K}		
	,	ge cam-plus-lifter wear, µm, max				
or Sequence IIIG ^L	Hot stuck rings	sty, % increase at 40°C, max		none ⁷ 150		
or sequence ma		deposit rating, min		3.5		
		/ear avg, μm, max		60		
	Hot stuck rings	rear avg, pm, max		none		
D 5302 ^{B,N}		sludge rating, ^E min		9.0		
(Sequence VE)		er sludge rating, ^E min		7.0		
,	Average piston s	skirt varnish rating, min		6.5		
	Average engine	varnish rating, min		5.0		
	Oil ring clogging	, %		report		
	Oil screen clogg			20.0		
	Compression rin	g sticking (hot stuck)		none		
	Cam wear, µm					
	Average, max			127		
D 6004 (0 IVA) N	Maximum, ma	ear, µmo Previe		380		
or D 6891 (Sequence IVA) ^N plus, D 6593 ^N	Average carri we	sludge rating, ^E min		120		
(Sequence VG)				7.8 8.0		
(Ocquerice Va)		Rocker arm cover sludge rating, $^{\mathcal{E}}$ min Average piston skirt varnish rating, $^{\mathcal{E}}$ min				
				7.5		
				8.9		
https://atandarda.itah.ai/aata	Average engine	varnish rating, min				
https://standards.iteh.ai/cata	Average engine	varnish rating, min ing, %, max				
D 5119 ^Q	Average engine Oil screen clogg Hot stuck compr Bearing weight le	varnish rating, P min 2 ing, 8 , max ession rings		ast 20 none 44485-0		
D 5119 ^Q (L-38)	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability	varnish rating, min ing, %, max ession rings oss, mg, max		20 none 40 R		
D 5119 ^Q (L-38) or D 6709 ^Q	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I	varnish rating, min ing, %, max ession rings oss, mg, max		20 none 40 8 26.4		
D 5119 ^Q (L-38)	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability	varnish rating, min ing, %, max ession rings oss, mg, max	9a34-4fffeaacf5c5/	20 none 40 R		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII)	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bear stability	varnish rating, min ing, %, max ession rings oss, mg, max oss, mg, max		20 14485-0 40 8 26.4 8		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bear stability	varnish rating, Pmin ing, %, max ession rings oss, mg, max oss, mg, max	sity Grade Performance Crite	20 14485-0 none 40 R 26.4 R eria ^S		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII)	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bear stability	varnish rating, min ing, %, max ession rings oss, mg, max oss, mg, max		20 14485-0 40 8 26.4 8		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992)	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight II Shear stability	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30	sity Grade Performance Crite SAE 10W-30	20 none 40 8 26.4 8 eria ^S SAE 15W-40		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss,	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability eter (effective	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30	sity Grade Performance Crite SAE 10W-30 20	20 14485-0 40 8 26.4 8 eria ^S SAE 15W-40		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability eter (effective	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30	sity Grade Performance Crite SAE 10W-30	20 none 40 R 26.4 R eria ^S SAE 15W-40		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight II Shear stability eter (effective	varnish rating, P min 2 ing, %, max ession rings oss, mg, max Viscos SAE 5W-30 25 20	sity Grade Performance Crite SAE 10W-30 20 17	20 14485-0 40 8 26.4 8 Prias SAE 15W-40 18 15		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight II Shear stability ter (effective	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30	sity Grade Performance Crite SAE 10W-30 20 17 50	20 14485-0 40 8 26.4 8 26.4 8 15W-40 18 15 NR ^U		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow in the second sec	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight II Shear stability ter (effective	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50	sity Grade Performance Crite SAE 10W-30 20 17	20 14485-0 40 8 26.4 8 Prias SAE 15W-40 18 15		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow 1 Test Method D 4951 or D 5185, phosp	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability eter (effective % max ^T 871°C (700°F), reduction, max whorus % mass,	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50	sity Grade Performance Crite SAE 10W-30 20 17 50	20 14485-0 40 8 26.4 8 26.4 8 15W-40 18 15 NR ^U		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow in Test Method D 4951 or D 5185, phosy max	Average engine Oil screen clogg Hot stuck compt Bearing weight I Shear stability Bearing weight I Shear stability Shear stability eter (effective "max" 771°C (700°F), reduction, max shorus % mass,	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max viscos SAE 5W-30 25 20 50 0.12	sity Grade Performance Crite SAE 10W-30 20 17 50 0.12	20 14485-0 40 8 26.4 8 15W-40 18 15 NR ^U NR		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow in Test Method D 4951 or D 5185, phosy max Test Method D 92 flash point, °C, min Test Method D 93 flash point, °C, min Test Method D 892 foaming tendency	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight II Shear stability ter (effective """ "" "" "" "" "" "" "" "" "" "" ""	varnish rating, P min ling, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50 0.12 200 185	SAE 10W-30 20 17 50 0.12 205 190	20 14485-0 40 85-0 14485-0 14485-0 14485-0 14485-0 14485-0 14485-0 145 155 155 155 155 155 155 155 155 155		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Sequence Method D 2887 volatility loss at 3 % max Test Method D 6795 (EOFT), % flow I Test Method D 4951 or D 5185, phosy max Test Method D 92 flash point, °C, min Test Method D 93 flash point, °C, min Test Method D 892 foaming tendency Sequence I, max, foaming/settling for the sequence I, max, foaming/settling for D 5185 phosy max	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight II Shear stability ter (effective """ "" "" "" "" "" "" "" "" "" "" ""	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50 0.12 200 185 10/0	SAE 10W-30 20 17 50 0.12 205 190	20 14485-0 40 85-0 40		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Sequence Method D 2887 volatility loss at Sequence Method D 6795 (EOFT), % flow the Test Method D 4951 or D 5185, phosy max Test Method D 92 flash point, °C, min Test Method D 93 flash point, °C, min Test Method D 892 foaming tendency Sequence I, max, foaming/settling Sequence II, max, foaming/settling Sequence II, max, foaming/settling Sequence III, max, foaming/settling III max, foaming	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability Ster (effective """ "" "" "" "" "" "" "" "" "" "" ""	varnish rating, P min ling, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50 0.12 200 185 10/0 50/0	SAE 10W-30 20 17 50 0.12 205 190 10/0 50/0	20 14485-0 40 8 9 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow in Test Method D 992 flash point, °C, min Test Method D 993 flash point, °C, min Test Method D 992 foaming tendency Sequence I, max, foaming/settling Sequence III, max, foaming/settling Sequence III, max, foaming/settling Sequence III, max, foaming/settling Sequence IIII, max, foaming/settling	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability eter (effective """ """ "" "" "" "" "" "" "" "" "" ""	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max viscos SAE 5W-30 25 20 50 0.12 200 185 10/0 50/0 10/0	SAE 10W-30 20 17 50 0.12 205 190 10/0 50/0 10/0	20 14485-0 40 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Septiment of the service	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability Shear stability eter (effective "max" 771°C (700°F), reduction, max phorus % mass, v v v ((Option A)	varnish rating, P min ling, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50 0.12 200 185 10/0 50/0	SAE 10W-30 20 17 50 0.12 205 190 10/0 50/0	20 14485-0 40 85-0 40		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow in Test Method D 992 flash point, °C, min Test Method D 993 flash point, °C, min Test Method D 992 foaming tendency Sequence I, max, foaming/settling Sequence III, max, foaming/settling Sequence III, max, foaming/settling Sequence III, max, foaming/settling Sequence IIII, max, foaming/settling	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability Shear stability eter (effective "max" 771°C (700°F), reduction, max phorus % mass, v v v ((Option A)	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max viscos SAE 5W-30 25 20 50 0.12 200 185 10/0 50/0 10/0 report x y	SAE 10W-30 20 17 50 0.12 205 190 10/0 50/0 10/0	20 14485-0 40 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Test Method D 2887 volatility loss at 3 % max ^T Test Method D 6795 (EOFT), % flow in Test Method D 992 flash point, °C, min Test Method D 992 flash point, °C, min Test Method D 892 foaming tendency Sequence I, max, foaming/settling Sequence III, max, foaming/settling Sequence III, max, foaming/settling Test Method D 6082 (optional blending Test Method D 6082 homogeneity and	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability eter (effective """ """ """ """ """ """ """ """ """	varnish rating, P min ling, %, max ession rings oss, mg, max oss, mg, max Viscos SAE 5W-30 25 20 50 0.12 200 185 10/0 50/0 10/0 report x y API SJ Category	Sity Grade Performance Crite SAE 10W-30 20 17 50 0.12 205 190 10/0 50/0 10/0 report ^x y	20 14485-0 485-0 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
D 5119 ^Q (L-38) or D 6709 ^Q (Sequence VIII) Bench Test and Measured Parame January 1, 1992) Test Method D 5800 volatility loss, Septiment of the service	Average engine Oil screen clogg Hot stuck compr Bearing weight I Shear stability Bearing weight I Shear stability eter (effective """ """ """ """ """ """ """ """ """	varnish rating, P min ing, %, max ession rings oss, mg, max oss, mg, max viscos SAE 5W-30 25 20 50 0.12 200 185 10/0 50/0 10/0 report x y	Sity Grade Performance Crite SAE 10W-30 20 17 50 0.12 205 190 10/0 50/0 10/0 report ^x y	20 14485-0 40 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		

TABLE 2 Continued

	API SJ Category	
Engine Test Method	Rated or Measured Parameter	Primary Performance Criteria
or D 6557 ^A	Average gray value, min	100
(Ball Rust Test) D 5533 ^{B,D}	Hours to 375 % kinematic	64
(SequenceIIIE)	viscosity increase at 40°C, min	04
(0040011001112)	Average engine sludge rating, ^E	9.2
	min	
	Average piston skirt varnish	8.9
	rating, ^F min	0.5
	Average oil ring land deposit rating, fmin	3.5
	Lifter sticking	none
	Scuffing and wear	
	Cam or lifter scuffing	none
	Cam plus lifter wear, µm	
	Average, max	30
	Maximum, max Ring sticking (oil-related) ^G	64 none
or D 6984 (Sequence	Kinematic viscosity, % increase	325 ^H
IIIF) ^D	at 40°C, max	323
,	Average piston skirt varnish	8.5′
	rating, min	,
	Weighted piston deposit rating,	3.2'
	min	20 ^{<i>l,K</i>}
	Screened average cam- plus–lifter wear, μm, max	20
	Hot stuck rings	none [/]
or Sequence IIIG ^L	Kinematic viscosity, % increase	150
	at 40°C, max	
	Weighted piston deposit rating, ^M	3.5
	min Cam-plus-lifter wear avg, µm,	60
	max max	00
	Hot stuck rings	none
D 5302 ^{B,N}	Average engine sludge rating, ^E	9.0
	min	
(Sequence VE)	Rocker arm cover sludge	7.0
	rating, ^E min	0.5
	Average piston skirt varnish rating, ^F min	6.5
	Average engine varnish rating, ^F	5.0
	min ASTINI DATES	
	catalog/standar Oil ring clogging, %8b-c9ee-400e-9a3	
	Oil screen clogging, %, max	20.0
	Compression ring sticking (hot stuck)	none
	Cam wear, µm	
	Average, max	127
	Maximum, max	380
or D 6891 (Sequence	Average cam wear, μm ^O	120
IVA) ^N		
plus, D 6593 ^N	Average engine sludge rating, ^E min	7.8
(Sequence VG)	min Rocker arm cover sludge	8.0
(004001100 Va)	rating, ^E min	0.0
	Average piston skirt varnish	7.5
	rating, min	
	Average engine varnish rating, P	8.9
	min	20
	Oil screen clogging, %, max Hot stuck compression rings	20 none
D 5119 ^Q	Bearing weight loss, mg, max	40
(L-38)	Shear stability	R
or D 6709 ^Q	Bearing weight loss, mg, max	26.4
(Sequence VIII)	Shear stability	R
		Crada Barfarmanaa Critaria
		y Grade Performance Criteria
Bench Test and Mea	SAE 0W-20,	
Denoti lest and Med	OAL OW-20,	All Others
	SAE 5W-30,	
	SAE 10W-30	

TABLE 2 Continued

	_	Viscosity Grade	Performance Criteria	
Bench Test and Measured Par	ameter	SAE 0W-20, SAE 5W-20, SAE 5W-30, SAE 10W-30	All Others	
Test Method D 6417 volatility loss at	371°C	17	15 ^{AA}	
(700°F), % max ^Z Test Method D 5480 volatility loss at 3	371°C	17	15 ^{AA}	
(700°F), % max ^Z Test Method D 6795 (EOFT), % flow r max	reduction,	50	50	
Test Method D 6794 (EOWTT), % flow max	v reduction,			
with 0.6 % H ₂ 0		report	report	
with 1.0 % H ₂ 0		report	report	
with 2.0 % H ₂ 0		report	report	
with 3.0 % H ₂ 0		report	report	
Test Method D 4951 or D 5185, phosp	ohorus %	0.10 ^{AB}	$NR^{\mathcal{U}}$	
mass, max	V	000	ND//	
Test Method D 92 flash point, °C, min		200	NR ^U	
Test Method D 93 flash point, °C, min		185	NR^U	
Test Method D 892 foaming tendency Sequence I, max, foaming/settling ^{At}	(Option A) C	10/0	10/0	
Sequence I, max, foaming/settling ^a Sequence II, max, foaming/settling ^a	AC	10/0 50/0	10/0 50/0	
Sequence III, max, foaming/settling		10/0	10/0	
Test Method D 6082 (optional blending		200/50 ^{AD}	200/50 ^{AD}	
Static foam, max, tendency/stability	g requireu)	200/30	200/30	
Test Method D 6922 homogeneity and	ł miscibility	Y	Y	
Test Method D 6335 High temperature	-	60	60	
(TEOST 33), deposit wt, mg, max			30	
Test Method D 5133 Gelation Index, n	nax The Cto	12 rd c	NR^U	
	API SL CAT	EGORY		
Engine Test Method	Rated or Measured	Parameter 7 17 2	Primary Performance Criteria	
D 6984 (Sequence IIIF)	Kinematic viscosity, % increa	se at 40°C, max	275	
	Average piston skirt varnish r	rating, ^F min	9.0	
	Weighted piston deposit ratin	g, ^J min () ()	4.0	
	Screened average cam-plus-	lifter wear, µm, max	20 ^K	
	Hot Stuck Rings		none	
,	Low temperature viscosity pe		report	
or Sequence IIIG ^L	Kinematic viscosity, % increa		150	
			**	
	Hot stuck rings	wfo wmo no o AF	none	
	Low temperature viscosity pe		report	
D 6891 (Sequence IVA)	Low temperature viscosity pe Cam wear average, µm, o ma	ax	report 120	
	Low temperature viscosity pe	ax	report	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max	ix	report 120 127 380	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG})	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating	ix : g, ^E min	report 120 127 380 7.8	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rati	ix : g, ^E min ng, ^E min	report 120 127 380 7.8 8.0	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish r	ix ; g, [∉] min ng, [∉] min ating, ^F min	report 120 127 380 7.8 8.0 7.5	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rati Average piston skirt varnish r Average engine varnish rating	ix ; g, [∉] min ng, [∉] min ating, ^F min	report 120 127 380 7.8 8.0 7.5 8.9	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, o ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rati Average piston skirt varnish r Average engine varnish ratin Oil screen clogging, %, max	ux s, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, o ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish rating Oil screen clogging, %, max Hot stuck Compression rings	ux s, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings	ux s, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, %	ux s, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG)	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, [%] , max Hot stuck Compression rings Cold stuck rings Oil screen debris, [%] Oil ring clogging, [%]	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, %	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII)	Low temperature viscosity pe Cam wear average, µm, o ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report 26.4	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG)	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, may Shear stability	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min	Low temperature viscosity pe Cam wear average, µm, o ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability asured Parameter t Test), average gray value,	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R Performance Criteria	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min Test Method D 5800 volatility ke Test Method D 6417 volatility ke	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish ratverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability asured Parameter t Test), average gray value, pss, % max	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min Test Method D 5800 volatility to Test Method D 6417 volatility to max	Low temperature viscosity per Cam wear average, µm, of mac Cam wear average, µm, max Cam wear max, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability assured Parameter t Test), average gray value, poss, % max poss at 371°C (700°F), %	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R Performance Criteria 100 15 10	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min Test Method D 5800 volatility to max D 6795 (EOFT), % flow reduct	Low temperature viscosity pe Cam wear average, µm, o ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability assured Parameter Test), average gray value, DSS, % max DSS at 371°C (700°F), % ion, max	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report report 26.4 R Performance Criteria	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min Test Method D 5800 volatility to Test Method D 6417 volatility to max D 6795 (EOFT), % flow reduct D 6794 (EOWTT), % flow reduct	Low temperature viscosity pe Cam wear average, µm, o ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability assured Parameter It Test), average gray value, poss, % max poss at 371°C (700°F), % ion, max lotion, max lotion, max	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R Performance Criteria 100 15 10 50	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min Test Method D 5800 volatility to Test Method D 6417 volatility to max D 6795 (EOFT), % flow reduct D 6794 (EOWTT), % flow reduct With 0.65	Low temperature viscosity per Cam wear average, µm, on max Cam wear average, µm, max Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability asured Parameter Test), average gray value, poss, % max poss at 371°C (700°F), % dion, max lotion, max lot	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R Performance Criteria 100 15 10 50	
D 6891 (Sequence IVA) D 5302 ^B (Sequence VE ^{AG}) D 6593 (Sequence VG) D 6709 (Sequence VIII) Bench Test and Mea Test Method D 6557 (Ball Rust min Test Method D 5800 volatility to Test Method D 6417 volatility to max D 6795 (EOFT), % flow reduct D 6794 (EOWTT), % flow reduct	Low temperature viscosity pe Cam wear average, µm, ^O ma Cam wear average, µm, max Cam wear max, µm, max Average engine sludge rating Rocker arm cover sludge rating Average piston skirt varnish raverage engine varnish rating Oil screen clogging, %, max Hot stuck Compression rings Cold stuck rings Oil screen debris, % Oil ring clogging, % Bearing weight loss, mg, max Shear stability assured Parameter t Test), average gray value, coss, % max coss at 371°C (700°F), % ion, max loction, max % H ₂ O % H ₂ O % H ₂ O	ux ; g, ^E min ng, ^E min ating, ^F min g, ^P min	report 120 127 380 7.8 8.0 7.5 8.9 20 none report report report report 26.4 R Performance Criteria 100 15 10 50	

TABLE 2 Continued

Bench Test and Measured Parameter	Performance Criteria		
Test Method D 4951 or D 5185, phosphorus % mass, max ^{AH}	0.10 ^{AB}		
Test Method D 892 foaming tendency (Option A)			
Sequence I, max, foaming/settling ^{AC}	10/0		
Sequence II, max, foaming/settling ^{AC}	50/0		
Sequence III, max, foaming/settling ^{AC}	10/0		
Test Method D 6082 (optional blending required) static	100/0 ^{AD}		
foam max, tendency/stability			
Test Method D 6922 homogeneity and miscibility	Y		
High temperature deposits (TEOST MHT-4), deposit wt,			
mg, max	45		
Test Method D 5133 (Gelation Index), max ^{AH}	12 ^{AI}		

^A Demonstrate passing performance in either Test Method D 5844 or D 6557.

- (8) Test Method D 5133, the Gelation Index technique, might identify oils susceptible to air binding and might provide low temperature protection not adequately measured by the Test Method D 4684.
- 4.1.2.6 Licensing of the API SJ category requires that candidate oils meet the performance requirements in this specification, and that the oils be tested in accordance with the protocols described in the ACC Petroleum Additives Product Approval Code of Practice. The methodology detailed in the ACC Code will help ensure that an engine oil meets its intended performance specification.
- 4.1.3 *SL*—Oil meeting the performance requirements measured in the following gasoline engine tests and bench tests:
- 4.1.3.1 Test Method D 6984, the Sequence IIIF gasoline engine test, is used to measure oil thickening and piston deposits under high temperature conditions and provides information about valve train wear.¹¹ (An alternative is the Sequence IIIG test.)

^B Monitoring of this test method was discontinued in June 20, 2001. Valid test results shall predate the end of the last calibration period for the test stand in which this test method was conducted.

^C CRC Rust Rating Manual No. 7, available from Coordinating Research Council, 219 Perimeter Center Pkwy., Atlanta, GA 30346.

^D Demonstrate passing performance in either Test Method D 5533 or D 6984. However, an oil passing Test Method D 6984 and containing less than 0.08 % mass phosphorus in the form of ZDDP shall also pass the wear limits in Test Method D 5302 (see also footnote ^L).

ECRC Sludge Rating Manual No. 12, available from Coordinating Research Council, 219 Perimeter Center Pkwy., Atlanta, GA 30346.

F CRC Varnish Rating Manual No. 14, available from Coordinating Research Council, 219 Perimeter Center Pkwy., Atlanta, GA 30346.

^G An oil-related stuck ring occurs on a piston with an individual oil ring land deposit rating <2.6.

H Determine at 60 h.

Determine at 80 h

^J Determine weighted piston deposits by rating the following piston areas and applying the corresponding weightings: undercrown, 10 %; second land, 15 %; third land, 30 %; piston skirt, 10 %; first groove, 5 %; second groove, 10 %; and third groove, 20 %. Use CRC Varnish Rating Manual No. 14 for all ratings.

K Calculate by eliminating the highest and lowest cam-plus-lifter wear results and then calculating an average based on the remaining ten rating positions.

^L For oils containing at least 0.06 % mass phosphorus in the form of ZDDP, demonstrating passing performance in the Sequence IIIG test obviates the need to also conduct Test Method D 5302 (Sequence VE), which was previously required for oils with less than 0.08 % mass phosphorus.

^M Unlike the Sequence IIIF test, piston skirt varnish rating is not required in the Sequence IIIG test.

^N Demonstrate passing performance in Test Method D 5302, or alternatively, in both Test Method D 6891 and Test Method D 6593.

O Determine cam wear according to Test Method D 6891. Seven wear measurements are made on each cam lobe and the seven measured values are added to obtain an individual cam lobe wear result. The overall cam wear value is the average of the twelve individual cam lobe wear results.

P Determine the average engine varnish rating by averaging the piston skirt, right rocker arm cover, and left rocker arm cover varnish ratings. Use the CRC Varnish Rating Manual No. 14 for all ratings.

^Q Demonstrate passing performance in either Test Method D 5119 or D 6709.

^R Ten-hour stripped kinematic viscosity (oil shall remain in original viscosity grade).

S Passing bench test performance is only required for SAE 5W-30, SAE 10W-30, and SAE 15W-40 viscosity grades as defined in SAE J300.

⁷ Meet either Test Method D 5800 or Test Method D 2887 volatility requirement.

 $^{^{\}it U}$ NR stands for Not Required.

^V Meet either Test Method D 92 or Test Method D 93 flash point requirement.

 $^{^{\}it W}$ Determine settling volume at 5 min.

^x Report kinetic foam volume (mL), static foam volume (mL), and collapse time, s.

YHomogeneous with SAE reference oils. at a log/standards

Z Meet the volatility requirement in either Test Method D 5800, D 5480, or D 6417.

AA Passing volatility loss only required for SAE 15W-40 oils.

^{AB} This is a noncritical specification as described in Practice D 3244.

AC Determine settling volume, in mL, at 10 min.

AD Determine settling volume, in mL, at 1 min.

AE Evaluate the 80-h test oil sample by Test Method D 4684 at the temperature indicated by the low temperature grade of oil as determined on the 80-h sample by Test Method D 5293.

AF Measure the viscosity of the EOT oil sample by Test Method D 4684. The measured viscosity shall meet the requirements of the original grade or the next higher grade. The EOT sample can be either from a Sequence IIIG or a Sequence IIIGA test. (A Sequence IIIGA test is identical to a Sequence IIIG test, except only low temperature viscosity performance is measured.) Additional details are provided in the Sequence IIIG test method, in Section 13.6.

AG Not required for oils containing a minimum of 0.08 % mass phosphorus in the form of ZDDP.

AH Requirement applies only to SAE 0W-20, 5W-20, 0W-30, 5W-30, and 10W-30 viscosity grades.

Al For gelation temperatures at or above the W grade pumpability temperature as defined in SAE J300.

¹¹ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1491.

- 4.1.3.2 Test Method D 6891, the Sequence IVA gasoline engine test, has been correlated with the Sequence VE gasoline engine test in terms of overhead cam and slider follower wear control.¹²
- 4.1.3.3 Test Method D 5302, the Sequence VE gasoline engine test, has been correlated with vehicles used in stop-and-go service prior to 1988, with regard to valve train wear. It is included in the SL performance specification to augment assessment of the wear control performance of oils containing less than 0.08 % mass of phosphorus from ZDDP additive.
- 4.1.3.4 Test Method D 6593, the Sequence VG gasoline engine test, has been correlated with the Sequence VE gasoline engine test and with vehicles used in stop-and-go service prior to 2000, with regard to sludge and varnish deposit control.
- 4.1.3.5 Test Method D 6709, the Sequence VIII gasoline engine test, is used to measure copper-lead bearing weight loss under high-temperature operating conditions and has been shown to correlate with the L-38 gasoline engine test.¹³
- (1) The Sequence VIII gasoline engine test is also used to determine the ability of an oil to resist permanent viscosity loss due to shearing in an engine.
- 4.1.3.6 In addition to passing performance in the engine tests, oils shall also meet bench test requirements (see Table 2), which are discussed in the following subsections:
- (1) Test Method D 6557 (Ball Rust Test), was developed to replace the Sequence IID gasoline engine test, and evaluates the ability of an oil to prevent the formation of rust under short-trip service conditions.
- (2) The volatility of engine oils is one of several factors that relates to engine oil consumption. For this engine oil category, volatility is measured by Test Methods D 5800 and D 6417.
- (3) Test Method D 6795, the Engine Oil Filterability Test (EOFT) and Test Method D 6794, the Engine Oil Water Tolerance Test (EOWTT) screen for the formation of precipitates and gels which form in the presence of water and can cause oil filter plugging.
- (4) Phosphorus compounds in excessive amounts can cause glazing of automotive catalysts and exhaust gas oxygen sensors and, thereby, deactivate them. Control of the phosphorus level in the engine oil may reduce this tendency. For this engine oil category, phosphorus content is measured by either Test Method D 4951 or D 5185.
- (5) Excessive foaming in engine oil can cause valve lifter collapse and a loss of lubrication due to the presence of air in the oil. Test Methods D 892 and D 6082 empirically rate the foaming tendency and stability of oils.
- (6) Test Method D 6922, the H and M Test indicates the compatibility of an oil with standard test oils.
- (7) Newer engines designed to provide increased power and improved driveability and to meet future federal emissions and fuel economy requirements may be sensitive to internal deposits caused by elevated engine operating temperatures. The
- ¹² Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1473.
- ¹³ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1471.

- TEOST MHT-4 test may be useful in determining the piston deposit control capability of oils recommended for these engines.¹⁴
- (8) Test Method D 5133, the Gelation Index technique, might identify oils susceptible to air binding and might provide low-temperature protection not adequately measured by Test Method D 4684.
- 4.1.3.7 Licensing of the API SL category requires that candidate oils meet the performance requirements in this specification, and that the oils be tested in accordance with the protocols described in the ACC Petroleum Additives Product Approval Code of Practice. The methodology detailed in the ACC Code will help ensure that an engine oil meets its intended performance specification.
- 4.1.4 *CF-4*—Oil meeting the performance requirements in the following diesel and gasoline engine tests and bench test:
- 4.1.4.1 Test Method D 6750, the 1K diesel engine test, has been correlated with vehicles equipped with engines used in high-speed operation prior to 1989, 15 particularly with regard to deposits and oil consumption.
- 4.1.4.2 The T-6 has been correlated with vehicles equipped with engines used in high-speed operation prior to 1980, ¹⁶ particularly with regard to deposits, oil consumption, and ring wear.
- 4.1.4.3 The T-7 test has been correlated with vehicles equipped with engines operated largely under lugging conditions prior to 1984, ¹⁷ particularly with regard to oil thickening.
- 4.1,4.4 Test Method D 5968, the bench corrosion test, has been shown to predict corrosion of engine oil-lubricated copper, lead, or tin-containing components used in diesel engines. Test Method D 5290, the NTC-400 diesel engine test, has been correlated with vehicles equipped with engines in highway operation prior to 1983, particularly with regard to oil consumption control, deposits, and wear. Test Method D 5290 is not listed in Table 3, as calibrated test stands are no longer available due to unavailability of critical test parts. It has been demonstrated that the 1K test, in combination with Test Method D 5968, can be substituted for the NTC-400 test as an acceptable means to demonstrate performance against this category; however, data from NTC-400 tests, run in calibrated stands, can be used to support this category in accordance with the provisions of Specification D 4485–94.
- 4.1.4.5 Test Method D 6709, the Sequence VIII gasoline engine test, is used to measure copper-lead bearing weight loss under high temperature operating conditions and has been shown to correlate with the L-38 gasoline engine test.¹³
- 4.1.5 *CF*—Oil meeting the performance requirements in the following diesel and gasoline engine tests:

¹⁴ Test under development by D02.B0.

¹⁵ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1273.

¹⁶ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1219.

¹⁷ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1220.

¹⁸ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1322.

¹⁹ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02–1194.

TABLE 3 C Engine Oil Categories

Category	Test Method	Rated or Measured Parameter	Primary Performance	Criteria	
CF-4	D 6709 (Sequence VIII) T-6	Bearing weight loss, mg, max Merit rating, ^A min	33.0 90		
	or D 6483 (T-9) ^B	Top piston ring weight loss, ^C average, mg, max	150		
	T-7	Liner wear, µm, max Average rate of kinematic viscosity increase during last	40 0.040		
	or	50 h, mm ² /s at 100°C/h, max	0.040		
	D 5967 (T-8A) ^B	Average rate of kinematic viscosity increase from 100 to 150 h, mm ² /s at 100°C/h, max	0.20		
	D 5968 (CBT) ^D	Copper, mg/kg (ppm) increase, max	20		
		Lead, mg/kg (ppm) increase, max	60		
		Tin, mg/kg (ppm) increase, max	report 3		
		Copper strip rating, E max	Two-test ^F	Three-test ^F	Four-test ^F
	D 6750 (1K)	A 1K test program with a minimum of two tests, acceptable according to the limits shown in the columns to the right, is required to demonstrate performance for this category.			
		Weighted demerits (WDK), G,H max	332	339	342
		Top groove fill (TGF), G, max	24	26	27
		Top land heavy carbon (TLHC), G % max	4	4	5
		Average oil consumption, g/kW·h, (0-252 h), max Final Oil consumption, g/kW·h, (228-252 h) max	0.5 0.27	0.5 0.27	0.5 0.27
		Piston, ring, and liner scuffing	0.21	0.21	0.21
		Number of tests allowed	none	none ^E	none ¹
		Piston ring sticking	none	none	none
F	D 6618 (1M-PC)	Top groove fill (TGF), G %, max	70 ^{<i>J</i>}	MTAC ^J	MTAC:/
	, ,	Weighted total demerits (WTD), max	240 ^J	MIAC	MTAC ^J
		Piston ring sticking	none		
		Piston, ring and liner scuffing	none One-Test	Two-Test K	Three-Test ^K
	D 6709 (Sequence VIII)	Bearing weight loss, mg, max	29.3	31.9	33.0
F-2	D 6618 (1M-PC)	Weighted total demerits (WTD), ^G max	100 ^J	MTAC ^J	MTAC ^J
71 -2	D 0018 (1W-FO)	weighted total dements (WTD), max			
		Document Prev	One-Test	Two-Test ^L	Three-Test ^L
	D 5862 (6V 92TA)	Cylinder liner scuffing area, % max Cylinder liner port plugging area,	45.0	48.0	50.0
		Average, % max Single cylinder, % max ASTM D4485_05	2 5	2 5	2 5
		Piston rings face distress demerits	00 o.23 a 34-4ffea	ac (0.24) /astm	-d440.26-05
		Average of No. 2 and 3, max	0.20	0.21	0.22
	D 6709 (Sequence VIII)	Bearing weight loss, mg, max	29.3	31.9 ^K	33.0 ^K
			One-Test	Two-Test ^M	Three-Test ^M
CG-4	D 6750 (1N)	Weighted demerits (WDN) ^{G,N}	286.2	311.7	323.0
	, ,	Top groove fill (TGF), G, max	20	23	25
		Top land heavy carbon (TLHC), ^G % max	3	4	5
		Oil consumption, g/kW·h, (0-252 h) max	0.5	0.5	0.5
		Piston, ring, and liner scuffing Number of tests allowed	nono	nono	none!
		Piston ring sticking	none none	none none	none ⁷ none
	D 5967 (T-8)	Viscosity increase at 3.8 % soot, cSt, max	11.5	12.5	13.0
	· (· -/	Filter plugging, differential pressure, kPa (psi), max	138 (20)	138 (20)	138 (20)
		Oil consumption, g/kW·h (lb/bhp·h), max	0.304	0.304	0.304
			(0.0005)	(0.0005)	(0.0005)
	D 6984 (Sequence IIIF)	60 h viscosity (at 40°C)	325	349	360
	or Sequence IIIG	increase from 10 min sample, %, max Kinematic viscosity, % increase at 40°C max	150	173	184
	D 6709 (Sequence VIII)	Bearing weight loss, mg, max	29.3	31.9 ^K	33.0 ^K
	S 0,00 (Ocquerios viii)	Used oil viscosity, cSt greater than SAE	_0.0	01.0	55.0
		J300 lower limit for grade, min ^O	0.5	0.5	0.5
	D 5966 (RFWT)	Wear, mils, max	0.45	0.49	0.50
		μm, max	(11.4)	(12.4)	(12.7)
	D 892 (Option A	Foaming characteristics			
	not allowed)	Foaming/settling, P mL, max	10/0		
		Sequence I Sequence II	10/0 20/0		
		Sequence III	10/0		
	D 6894 (EOAT) ^Q	Aeration, volume % max	10.0		
	D 6894 (EOAT) ^Q D 5968				