INTERNATIONAL STANDARD

ISO 21427-1

First edition 2006-08-01

Water quality — Evaluation of genotoxicity by measurement of the induction of micronuclei —

Part 1:

Evaluation of genotoxicity using iTeh STamphibian larvae/IEW

Squalité de l'eau Evaluation de la génotoxicité par le mesurage de l'induction de micronoyaux —

Partie 1: Évaluation de la génotoxicité à l'aide de larves d'amphibiens https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-c0e74bc85a95/iso-21427-1-2006

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21427-1:2006 https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-c0e74bc85a95/iso-21427-1-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page

Forewo	ordi	V
Introductionv		
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Principle	2
5	Test environment	3
6	Reagents	3
7	Apparatus	4
	Treatment and preparation of samples	
	Waters, effluents, leachates and eluates to be tested	
	Procedure Selection of concentrations ANDARD PREVIEW Conducting the test Reading of the histological preparations S. Iteh.ai)	
10 10 1	Expression of results Presentation of results Processing of results ards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f- Interpretation of results c0e74bc85a95/iso-21427-1-2006	6
10.1	Processing of results and a catalog standards/sist/98ebf7de-4b79-401e-ac3f-	7
11	Validity of the test	7
12	Test report	7
Annex	A (normative) Data specific to Pleurodeles waltl	9
Annex B (normative) Breeding		
Annex C (informative) Example of a statistical method for processing results		
Bibliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 21427-1 was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 5, *Biological methods*.

ISO 21427 consists of the following parts, under the general title Water quality — Evaluation of genotoxicity by measurement of the induction of micronuclei tandards.iteh.ai)

- Part 1: Evaluation of genotoxicity using amphibian larvae
- Part 2: Mixed population method using the cell line V79

 Part 2: Mixed population method using the cell line V79

 coe/4bc85a95/iso-21427-1-2006

Introduction

Environmental protection calls for taking into account the genotoxic hazards likely to concern the different populations making up ecosystems. Since such hazards may emerge within waters, it is essential to assess them by means of laboratory tests that allow the evaluation, within aqueous environments, of the genotoxicity of a water, effluent, substance or preparation with respect to organisms living in aquatic environments.

This part of ISO 21427 describes a test method that is likely to provide information in this field. It allows the highlighting, within aqueous environments, of the genotoxic effects on larvae of the two amphibian species, *Xenopus laevis* and *Pleurodeles waltl*.

The choice of the Xenopus is recommended because of several advantages offered by this species: high hatching rates, available all year round after hormone treatment of the breeders, rapid larval development, easy feeding of larvae, widespread distribution within research or breeding centres. However, the described method is, basically, also applicable to Pleurodeles larvae. The provisions specific to Pleurodeles are described in Annex A.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21427-1:2006 https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-c0e74bc85a95/iso-21427-1-2006

© ISO 2006 - All rights reserved

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 21427-1:2006 https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-c0e74bc85a95/iso-21427-1-2006

Water quality — Evaluation of genotoxicity by measurement of the induction of micronuclei -

Part 1:

Evaluation of genotoxicity using amphibian larvae

WARNING — Persons using this part of ISO 21427 should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

IMPORTANT — It is absolutely essential that tests conducted according to this part of ISO 21427 be carried out by suitably trained staff.

Scope 1

iTeh STANDARD PREVIEW

This part of ISO 21427 specifies a method for assessing genotoxicity using Amphibia larvae (Xenopus laevis and Pleurodeles waltl). The provisions specific to Pleurodeles are described in Annex A.

The method is applicable to:

ISO 21427-1:2006

- https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-aqueous effluents;
- c0e74bc85a95/iso-21427-1-2006
- aqueous leachates;
- eluates of soils;
- eluates of industrial waste:
- eluates of sludges from sewage treatment;
- surface and ground water;
- water-soluble substances.

Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5667-16, Water quality — Sampling — Part 16: Guidance on biotesting of samples

ISO 7346-1, Water quality — Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] — Part 1: Static method

ISO 7346-2, Water quality — Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] — Part 2: Semi-static method

ISO 7346-3, Water quality — Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] — Part 3: Flow-through method

EN 12457-2, Characterization of waste — Leaching — Compliance test for leaching of granular waste materials and sludges — Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg with particle size below 4 mm (without or with size reduction)

NF T 90-305, Testing water — Determination of the acute toxicity of a substance to Salmo gairdneri — Static and flow through methods

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

micronuclei

small particles consisting of acentric fragments of chromosomes and/or entire chromosomes which lag behind at anaphase stage of cell division and form, after telophase, single or multiple micronuclei in the cytoplasm

3.2

sample under test

substance, effluent, surface water, ground water, aqueous effluent, leachate, percolate or eluate submitted to testing

(standards.iteh.ai)

3.3

test medium

ISO 21427-1:2006

mixture of test water (6.2), the sample under test and food lards/sist/98ebf7de-4b79-401e-ac3f-c0e74bc85a95/iso-21427-1-2006

3.4

test solution

mixture of test water (6.2) and the sample under test

4 Principle

The test organisms are exposed during 12 d [3] to a range of concentrations of the sample under test. A control test without a sample (negative control) and a control test with a genotoxic reference substance (positive control) are carried out in parallel under the same conditions. The positive control allows the quality of the biological reagent to be checked and the test to be validated.

During cell division, chromatid fragments without centromers do not move to the nuclei of the daughter cells and stay within the cytoplasma. Some of the chromosomal aberrations induced by the test material are due to chromatid fragments without centromer and are therefore not incorporated in the nuclei of the daughter cells. In addition, spindle disorders may lead to chromosomes which are not incorporated into the nucleus. They are not nuclei and they are formed in the cell cytoplasm not in the plasma. The rate (per thousand ‰) of erythrocytes with micronuclei is determined for each concentration of the sample under test and for the control solutions. The rate of erythrocytes with micronuclei for each concentration is compared to that of the negative control in order to determine the concentrations that induce a positive genotoxic effect.

NOTE The rate of erythrocytes with micronuclei is defined as the level of erythrocytes including one or more micronuclei scored in a sample of 1 000 erythrocytes observed in one blood smear.

5 Test environment

All of the tests and handling operations as well as the breeding of the adults and larvae shall be performed in a room in which the atmosphere is free from toxic dusts and vapours.

The test is conducted under lighting (artificial light or natural light without direct sunshine) according to a 12 h light/12 h dark cycle, in a thermostatically-controlled chamber (7.3) so as to maintain the bottles at a temperature of 22 $^{\circ}$ C \pm 1 $^{\circ}$ C.

6 Reagents

6.1 Biological reagent, *Xenopus laevis*¹⁾ designated hereafter by the common name Xenopus.

The tests shall start on larvae at stage 50 of the Nieuwkoop and Faber [1] chronological table of development. At this stage, the animals measure 20 mm to 27 mm in length and present a constriction at the base of the hind leg.

The larvae shall be kept in vessels (7.2) for a period of at least 8 d before the start of the test under temperature and lighting conditions identical to those of the test. The larvae shall be free of diseases and malformations.

For a given test, the batches of treated larvae and control larvae shall stem from the same hatching process. Each batch is made up of at least 15 test vessels (7.2).

6.2 Test water. iTeh STANDARD PREVIEW

The water used for the test shall meet the criteria described in the first paragraph of Annex B. If water other than the breeding water is used, the organisms shall be maintained in this water during at least 8 d before starting the test.

ISO 21427-12006

https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-c0e74bc85a95/iso-21427-1-2006

6.3 Food.

The food employed is that usually intended for aquarium fish²⁾. It shall be ground to a powder just prior to use. Freeze-dried watercress powder may also be used.

- **6.4 Reference substance**, Cyclophosphamide monohydrate $(C_7H_{15}Cl_2N_2O_2P,H_2O)$, of recognized analytical quality, at a concentration of 20 mg/l.
- 6.5 Intermediate solvent, dimethyl sulfoxide (DMSO) or any other appropriate water-miscible solvent.

The genotoxicity and general toxicity of the solvent being used shall be established beforehand.

- **6.6 Anaesthetic**, tricaine methane sulfonate.
- **6.7 Heparin**, 200 µg/l solution of powdered heparin in a 7 g/l aqueous solution of sodium chloride.
- **6.8 Methanol**, CH₃OH, of recognized analytical quality.

© ISO 2006 – All rights reserved

¹⁾ Xenopus can be obtained from the Service d'élevage de Xénopes du C.N.R.S., UPRES A 6026 C.N.R.S., Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product.

²⁾ Tetraphyll is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product.

6.9 Stains [16]

6.9.1 Masson's haemalum.

Composition

Haematin 2 mg/ml

Potassium alum 10 %

6.9.2 Groat's haematoxylin.

Composition

Ammonium ferric sulfate (Iron alum) 1,0 g

Haematoxylin 0,5 g

Sulfuric acid concentrated 0,8 ml

Ethanol 50 ml

Water 50 ml

7 Apparatus

iTeh STANDARD PREVIEW

Ordinary laboratory apparatus in glass or chemically inert material and in particular the following.

7.1 Aquariums, 25 I or 50 I capacity.

ISO 21427-1:2006

https://standards.iteh.ai/catalog/standards/sist/98ebf7de-4b79-401e-ac3f-

7.2 Glass containers, e.g. bottles, 5 I capacity, capable of being hermetically closed.

Conical flasks with ground-glass stoppers or rubber bungs covered with a tetrafluorocarbon film are suitable.

- **7.3 Thermostatically-controlled chamber**, of sufficient capacity to hold all the bottles corresponding to the different batches of one complete test test sample, reference substance and negative control and able to maintain the bottles (7.2) at a temperature of 22 $^{\circ}$ C \pm 1 $^{\circ}$ C.
- 7.4 Binocular magnifying glass.
- **7.5 Microscope**, fitted with an immersion lens (total magnification \times 1 500).
- 7.6 Heparinized micropipettes.

NOTE To be heparinized, the micropipettes are stretched and opened, then the sharp size of the micropipette is filled with a 200 µg/ml solution of heparin in a 7 g/l NaCl solution.

8 Treatment and preparation of samples

8.1 Waters, effluents, leachates and eluates to be tested

It is recommended to carry out the sampling, transportation and storage of the samples in accordance with the general procedures as specified in ISO 5667-16.

The interval between the collection of the sample and its receipt by the laboratory shall not exceed 24 h.

For solid samples (waste, soils, sludge), conduct, within 1 month following the receipt of the sample by the laboratory, a leaching test according to the protocol specified in EN 12457-2. However, the obtained aqueous eluates shall not be filtered prior to testing. The obtained eluates shall be kept in the dark at a temperature of $4 \, ^{\circ}\text{C} \pm 3 \, ^{\circ}\text{C}$ until the test is performed. The latter shall be started at the latest 24 h after the leaching stage.

The samples of waters, effluents or leachates, contained in bottles made from chemically inert materials, shall be kept in the dark at a temperature of 4 $^{\circ}$ C \pm 3 $^{\circ}$ C until the test is performed. The latter shall be conducted at the latest 24 h after receipt of the sample by the laboratory.

At the time of testing, homogenize the sample to be analysed. The quantities of sample (3.2) required for the daily renewals of test medium (3.3) are brought up to the temperature of 22 $^{\circ}$ C \pm 1 $^{\circ}$ C beforehand.

If the pH of the sample is not between 6 and 8 inclusive, adjust it to 7 ± 1 using hydrochloric acid or sodium hydroxide and homogenize the sample under test (3.2).

8.2 Substances to be tested

8.2.1 Preparation of the stock solutions of substances to be tested

The stock solution of the substance to be tested is prepared by dissolving a known quantity of substance in a specified volume of test water (6.2). It shall be prepared at the time of use. However, if the stock solution of the substance is stable in the dark and at 4 °C, it may be prepared in advance and stored under these conditions.

8.2.2 Preparation of the test solutions of substances to be tested R W

The test solutions are prepared just prior to use by diluting the stock solution in the test water (6.2) in order to obtain the necessary concentrations.

In the case of substances that are slightly soluble or insoluble in water, an intermediate water-miscible solvent (6.5) may be used. In this case, the solvent concentration shall be the same in each container and shall not exceed 100 mg/l. The test water (6.2) is shaken when introducing the intermediate solution, which generally leads to the formation of a microsuspension. If a precipitate forms, the test cannot be carried out. If the use of an intermediate solvent is unavoidable, a negative control batch containing the same solvent concentration shall be included in the test.

9 Procedure

9.1 Selection of concentrations

The test shall comprise at least five concentrations of the sample under test selected within a geometric range with a separation factor not exceeding two. These concentrations constitute the test solutions (3.4).

For the substances, example concentrations are:

10 mg/l; 5 mg/l; 2,5 mg/l; 1,25 mg/l; 0,62 mg/l; 0,31 mg/l.

For the samples of waters, effluents, leachates or eluates, example concentrations are:

1 000 ml/l; 500 ml/l; 250 ml/l; 125 ml/l; 62,5 ml/l.

This range of concentrations is prepared by diluting the sample with the test water (6.2).

Each test shall include a negative control batch without any sample under test.

NOTE The test concentrations are proposed as examples. The full-scale definitive test can be found from the previous literature on the tested substance or predicted from the results of a range finding test [3], [8], [9], [13].

© ISO 2006 – All rights reserved