INTERNATIONAL STANDARD

Second edition 2006-05-01

Iron ores — Determination of total iron content —

Part 1: Titrimetric method after tin(II) chloride reduction

iTeh STANDARD PREVIEW Minerais de fer — Dosage du fer total — (Steartie 1: Méthode titrimétrique après réduction au chlorure d'étain(II)

<u>ISO 2597-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/6e15876e-808a-4988-abc2-5937b1a24ad6/iso-2597-1-2006

Reference number ISO 2597-1:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2597-1:2006

https://standards.iteh.ai/catalog/standards/sist/6e15876e-808a-4988-abc2-5937b1a24ad6/iso-2597-1-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewo	ord	iv
Introductionv		
1	Scope	. 1
2	Normative references	. 1
3	Principle	. 2
4	Reagents	. 2
5	Apparatus	
6 6.1 6.2 6.2.1 6.2.2	Sampling and samples Laboratory sample Preparation of test samples Ores having significant contents of combined water or oxidizable compounds Ores outside the scope of 6.2.1	. 4 . 4 . 4
7 7.1 7.2 7.3 7.4 7.5 7.5.1 7.5.2 7.5.3 7.5.4	Procedure Number of determinations Test portion 11.en STANDARD PREVIEW Determination of hygroscopic moisture content Blank test and check test Standards.iteh.ai . Determination Determination of the test portion <u>SO 2597-1-2006</u> Reduction	4 5 5 5 5 6 7
8 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.3 8.2.4 8.2.5 8.3	Expression of results Calculation of total iron content General treatment of results Repeatability and permissible tolerance Determination of analytical result Between-laboratories precision Check for trueness Calculation of final result Oxide factors in percent	. 7 . 8 . 8 . 8 . 8 . 9 10
9	Test report	10
Annex	A (normative) Flowsheet for the procedure for the acceptance of analytical values for test samples	11
Annex	B (informative) Derivation of precision statements	12
Annex	C (informative) Decontamination of the waste solutions from the analysis	13

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 2597-1 was prepared by Technical Committee ISO/TC 102, *Iron ore and direct reduced iron*, Subcommittee SC 2, *Chemical analysis*.

This second edition cancels and replaces the first edition (ISO 2597-1:1994), which has been editorially revised.

ISO 2597 consists of the following parts, under the general title *Iron ores* — *Determination of total iron content*:

https://standards.iteh.ai/catalog/standards/sist/6e15876e-808a-4988-abc2-

- Part 1: Titrimetric method after tin(II) chloride reduction -2597-1-2006
- Part 2: Titrimetric method after titanium(III) chloride reduction
- Part 3: Calculation method

Introduction

This part of ISO 2597 has been updated to correct errors in the presentation of statistical information in the previous edition.

This is considered to be an editorial revision.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2597-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/6e15876e-808a-4988-abc2-5937b1a24ad6/iso-2597-1-2006

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2597-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/6e15876e-808a-4988-abc2-5937b1a24ad6/iso-2597-1-2006

Iron ores — Determination of total iron content —

Part 1: Titrimetric method after tin(II) chloride reduction

WARNING — This part of ISO 2597 may involve hazardous materials, operations and equipment. This part of ISO 2597 does not purport to address all of the safety issues associated with its use. It is the responsibility of the user to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This part of ISO 2597 specifies a titrimetric method for the determination of the total iron content of iron ores, using potassium dichromate after reduction of the trivalent iron by tin(II) chloride.

The method is applicable to total iron contents between 30 % (mass fraction) and 72 % (mass fraction) in natural iron ores, iron ore concentrates and agglomerates, including sinter products.

NOTE An equivalent International Standard that does not use mercury(II) chloride is ISO 9507:1990, *Iron ores* — *Determination of total iron content* — *Titanium(III) chloride reduction methods*.

ISO 2597-1:2006

A suggested procedure for removal of mercury from the waste solutions before discharge to effluent drains is given in Annex C. 5937b1a24ad6/iso-2597-1-2006

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 385, Laboratory glassware — Burettes

- ISO 648, Laboratory glassware One-mark pipettes
- ISO 1042, Laboratory glassware One-mark volumetric flasks

ISO 2596, Iron ores — Determination of hygroscopic moisture in analytical samples — Gravimetric, Karl Fischer and mass-loss methods

ISO 3082, Iron ores — Sampling and sample preparation procedures

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 7764, Iron ores — Preparation of predried test samples for chemical analysis

3 Principle

The test portion is decomposed by one of the following methods:

a) For samples containing not more than 0,05 % (mass fraction) vanadium, 0,1 % (mass fraction) molybdenum or 0,1 % (mass fraction) copper: treatment with hydrochloric acid, the residue being filtered off and ignited, treatment with hydrofluoric and sulfuric acids to remove silica, and fusion with potassium pyrosulfate.

The melt is dissolved in hydrochloric acid, iron is precipitated with ammonia solution, the precipitate is re-dissolved in hydrochloric acid and this solution is added to the main solution.

b) For samples containing more than 0,05 % (mass fraction) vanadium: fusion with alkali, the melt being leached with water and filtered, the filtrate being discarded. The residue is dissolved in hydrochloric acid.

Trivalent iron in the solution is reduced using tin(II) chloride. Excess reductant is oxidized with mercury(II) chloride.

The reduced iron is titrated with potassium dichromate solution, using sodium diphenylaminesulfonate as the indicator.

4 Reagents

During the analysis, use only reagents of recognized analytical grade, and only water that complies with grade 2 of ISO 3696.

- 4.1 Hydrochloric acid, $\rho = 1,16$ g/ml to 1,19 g/ml.
- **4.2** Hydrochloric acid, $\rho = 1,16$ g/ml to 1,19 g/ml $\frac{19}{6}$ Gilute $\frac{12006}{15876e-808a-4988-abc2-}$
- **4.3** Hydrochloric acid, $\rho = 1,16$ g/ml to 1,193 g/ml, diluted 1.12 g/ml to 2.12006
- **4.4** Hydrochloric acid, $\rho = 1,16$ g/ml to 1,19 g/ml, diluted 1 + 10.
- **4.5** Hydrochloric acid, $\rho = 1,16$ g/ml to 1,19 g/ml, diluted 1 + 50.
- **4.6 Sulfuric acid**, ρ = 1,84 g/ml.
- **4.7** Sulfuric acid, $\rho = 1,84$ g/ml, diluted 1 + 1.
- **4.8** Hydrofluoric acid, $\rho = 1,13$ g/ml, [40 % (mass fraction)], or $\rho = 1,19$ g/ml, [48 % (mass fraction)].
- **4.9** Orthophosphoric acid, $\rho = 1.7$ g/ml.
- **4.10** Ammonia solution, $\rho = 0.90$ g/ml.
- **4.11** Sodium carbonate (Na₂CO₃), anhydrous powder.

Heat for 30 min at 500 °C, or confirm that the water content is not more than 1 % (mass fraction) (by heating a test portion for 30 min at 500 °C and measuring the loss in mass).

4.12 Sodium peroxide (Na₂O₂), dry powder.

Store this reagent in a dry environment and do not use after it has begun to agglomerate.

4.13 Potassium pyrosulfate (K₂S₂O₇), fine powder.

4.14 Sulfuric acid-orthophosphoric acid mixture.

Cautiously pour 150 ml of sulfuric acid (4.6) into about 300 ml of water while stirring, cool in a water bath or running water, add 150 ml of orthophosphoric acid (4.9) and dilute to 1 litre with water.

4.15 Sodium hydroxide, 20 g/l solution.

4.16 Tin(II) chloride, 100 g/l solution.

Dissolve 100 g of crystalline tin(II) chloride dihydrate (SnCl₂·2H₂O) in 200 ml of hydrochloric acid (4.1) by heating the solution in a water bath.

Cool the solution and dilute to 1 litre with water.

Store this solution in a brown glass bottle with the addition of a small quantity of granular or mossy tin metal.

NOTE The tin(II) chloride solution may be prepared in 250 ml lots.

- **4.17** Mercury(II) chloride (HgCl₂), 50 g/l solution.
- **4.18** Potassium permanganate (KMnO₄), 30 g/l solution.
- 4.19 Iron standard solution, 0,1 mol/l.

Weigh, to the nearest 0,002 g, 5,58 g of pure iron [minimum purity 99,9 % (mass fraction)] into a 500 ml conical flask and place a small filter funnel in the neck. Add 75 ml of hydrochloric acid (4.2) in small increments and heat until the iron has dissolved. Cool and oxidize with 5 ml of hydrogen peroxide [30 % (volume fraction)] added in small portions. Heat to boiling and boil to decompose the excess hydrogen peroxide and to remove chlorine. Transfer to a 1 000 ml one-mark volumetric flask, dilute to volume with water and mix.

ISO 2597-1:2006

1,00 ml of this solution is equivalent to 1,00 ml of potassium dichromate standard volumetric solution.

4.20 Potassium dichromate, standard volumetric solution, $c(K_2Cr_2O_7) = 0,016$ 67 mol/l.

Pulverize about 6 g of potassium dichromate standard reagent [minimum purity 99,9 % (mass fraction)] in an agate mortar, dry in an air bath at 140 °C to 150 °C for 2 h, and cool to room temperature in a desiccator. Dissolve 4,904 g of this dried and pulverized potassium dichromate in water and dilute the solution to exactly 1 000 ml.

Record, on the stock bottle, the temperature at which this dilution was made (t_1) .

4.21 Sodium diphenylaminesulfonate, solution.

Dissolve 0,2 g of powdered sodium diphenylaminesulfonate ($C_6H_5NHC_6H_4SO_3Na$) in a small volume of water and dilute to 100 ml.

Store this solution in a brown glass bottle.

5 Apparatus

Ordinary laboratory apparatus, including burettes, one-mark pipettes and one-mark volumetric flasks complying with the specifications of ISO 385, ISO 648 or ISO 1042, respectively (unless otherwise indicated), and the following.

5.1 Zirconium, vitreous carbon or alkali-resistant sintered alumina crucibles, of capacity 25 ml to 30 ml.

- 5.2 Platinum crucibles, of capacity 25 ml to 30 ml.
- 5.3 Porcelain crucibles, of capacity 25 ml to 30 ml.
- 5.4 Weighing spatula, of non-magnetic material or demagnetized stainless steel.
- **5.5** Muffle furnace, capable of being maintained at between 500 °C \pm 10 °C and 800 °C \pm 10 °C.

6 Sampling and samples

6.1 Laboratory sample

For the analysis, use a laboratory sample of minus 100 μ m particle size which has been taken and prepared in accordance with ISO 3082. In the case of ores having significant contents of combined water or oxidizable compounds, use a particle size of minus 160 μ m.

NOTE A guideline on significant contents of combined water and oxidizable compounds is incorporated in ISO 7764.

If the determination of total iron relates to a reducibility test, prepare the laboratory sample by crushing and pulverizing, to less than 100 μ m particle size, the whole of one of the reducibility test portions which has been reserved for chemical analysis. In the case of ores having significant contents of combined water or oxidizable compounds, use a particle size of minus 160 μ m.

6.2 Preparation of test samples STANDARD PREVIEW

Depending on the ore type, proceed in accordance with either 6.2.1 or 6.2.2.

6.2.1 Ores having significant contents of combined water or oxidizable compounds

https://standards.iteh.ai/catalog/standards/sist/6e15876e-808a-4988-abc2-Prepare an air-equilibrated test sample, in accordance with ISO 2596 with the following types of ores:

- a) natural or processed ores in which the content of combined water is higher than 2,5 % (mass fraction);
- b) processed ores containing metallic iron;
- c) natural or processed ores in which the sulfur content is higher than 0,2 % (mass fraction).

6.2.2 Ores outside the scope of 6.2.1

Prepare a predried test sample as follows.

Thoroughly mix the laboratory sample and, taking multiple increments, extract a test sample in such a way that it is representative of the whole contents of the container. Dry the test sample at 105 °C \pm 2 °C, as specified in ISO 7764. (This is the predried test sample.)

7 Procedure

7.1 Number of determinations

Carry out the analysis at least in duplicate in accordance with Annex A, independently, on one test sample (6.2).

NOTE The expression "independently" means that the second and any subsequent result is not affected by the previous result(s). For this particular analytical method, this condition implies that the repetition of the procedure is carried out either by the same operator at a different time, or by a different operator, including appropriate recalibration in either case.

7.2 Test portion

Taking several increments, weigh, to the nearest 0,000 2 g, approximately 0,4 g of the test sample (6.2) using the non-magnetic spatula (5.4).

NOTE For samples of iron content higher than 68 % (mass fraction), weigh approximately 0,38 g.

If predried test samples are being used, the test portion should be taken and weighed quickly on the day of predrying, to avoid reabsorption of moisture.

7.3 Determination of hygroscopic moisture content

Where the ore type conforms to the specifications of 6.2.1, determine the hygroscopic moisture content in accordance with ISO 2596, simultaneously with the taking of the test portion (7.2) for the determination of iron content.

7.4 Blank test and check test

In each run, one blank test and one analysis of a certified reference material of the same type of ore shall be carried out in parallel with the analysis of the ore sample(s), under the same conditions. A test sample of the certified reference material shall be prepared in a manner appropriate to the type of ore involved (see 6.2).

The certified reference material should be of the same type as the sample to be analysed, and the properties of the two materials should be sufficiently similar to ensure that, in either case, no significant changes in the analytical procedure will become necessary.

NOTE The certified reference material is used only to validate the performance of the analytical procedure and expressly not to standardize the potassium dichromate solution.

Where the analysis is carried out on several samples at the same time, the blank value may be represented by one test, provided that the procedure is the same and the reagents used are from the same reagent bottles.

Where the analysis is carried out on several samples of the same type of ore at the same time, the analytical value of one certified reference material may be used.2597-1-2006

7.5 Determination

7.5.1 Decomposition of the test portion

7.5.1.1 Acid decomposition [for samples containing not more than 0,05 % (mass fraction) vanadium, 0,1 % (mass fraction) molybdenum or 0,1 % (mass fraction) copper]

Place the test portion (7.2) in a 300 ml beaker, add 30 ml of hydrochloric acid (4.1), cover the beaker with a watch-glass, and heat the solution in the low-temperature zone (about 80 °C) of a hotplate for about 1 h. Transfer to a higher-temperature zone and heat just below boiling for about 10 min, or until the ore is substantially decomposed. (See note and second-last paragraph.)

Wash the watch-glass and dilute the solution to about 50 ml with warm water. Filter the insoluble residue on a close-texture paper and wash with warm hydrochloric acid (4.5) until the yellow colour of iron(III) chloride is no longer observed. Then wash it with warm water six to eight times. Collect the filtrate and washings in a 600 ml beaker and concentrate to about 30 ml by heating without boiling (This is the main solution.)

Place the filter paper and the residue in a platinum crucible (5.2), dry, char the paper and finally ignite at 750 °C to 800 °C. Allow the crucible to cool. Moisten the residue in the crucible with sulfuric acid (4.7), add about 5 ml of hydrofluoric acid (4.8), and heat gently to remove silica and sulfuric acid.

Add 2 g of potassium pyrosulfate (4.13) to the contents of the cooled crucible and heat gently at first and then more strongly, minimizing any tendency for the flux to creep, until a clear melt is obtained. Allow the melt to cool, place the platinum crucible in a 300 ml beaker, add about 100 ml of warm water and about 5 ml of hydrochloric acid (4.1), and heat gently to dissolve the melt. Rinse and remove the platinum crucible from the beaker.