INTERNATIONAL STANDARD

ISO 5398-4

IULTCS/IUC 8:4

First edition 2007-08-01

Leather — Chemical determination of chromic oxide content —

Part 4:

Quantification by inductively coupled plasma – optical emission spectrometer (ICP-OES)

iTeh STANDARD PREVIEW

Cuir — Dosage chimique de l'oxyde de chrome —

Partie 4: Quantification par plasma à couplage inductif – spectromètre d'émission optique (ICP-OES)

https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958e-eeb33743e219/iso-5398-4-2007

ISO 5398-4:2007(E) IULTCS/IUC 8:4:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5398-4:2007 https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958e-eeb33743e219/iso-5398-4-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents		Page
Forewo	ord	iv
Introduction		ν
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	2
5	Sampling and sample preparation	2
6 6.1 6.2	Reagents	2 2
7	Apparatus	2
8 8.1 8.2	Methods Preparation of analytical solution	3
9 10	Calculation and expression of results	4 5
Annex	A (informative) Determination of water and other volatile matter	

https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958eeeb33743e219/iso-5398-4-2007

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

This part of ISO 5398 was prepared by the Chemical Tests Commission of the International Union of Leather Technologists and Chemists Societies (IUC Commission, IULTCS) in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 289, Leather, the secretariat of which is held by UNI, in accordance with the agreement on technical co-operation between ISO and CEN (Vienna Agreement). It is based on IUC 8 originally published in J. Soc. Leather Trades Chemists 49, p. 17, (1965) and declared an official method of the IULTCS in 1965.

IULTCS, originally formed in 1897, is a world-wide organization of professional leather societies to further the advancement of leather science and technology. IULTCS has three Commissions, which are responsible for establishing international methods for the sampling and testing of leather. ISO recognizes IULTCS as an international standardizing body for the preparation of test methods for leather.

ISO 5398 consists of the following parts, under the general title *Leather* — *Chemical determination of chromic oxide content*:

- Part 1: Quantification by titration
- Part 2: Quantification by colorimetric determination
- Part 3: Quantification by atomic absorption spectrometry
- Part 4: Quantification by inductively coupled plasma optical emission spectrometer (ICP-OES)

Introduction

ISO 5398 has been split into four parts, each describing methods suitable for the determination of the chromic oxide content in leather. The different techniques have been described to reflect the variations in industrial practice compared with the more sensitive analytical equipment available for test laboratories. Variations also exist in the range of chromic oxide that the methods are deemed suitable to quantify.

ISO 5398-4 describes a technique that is suitable for determining chromium more precisely than those described in ISO 5398-1 and ISO 5398-2. It requires the use of sophisticated analytical equipment, such as inductively coupled plasma and atomic absorption spectroscopy.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5398-4:2007 https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958e-eeb33743e219/iso-5398-4-2007

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5398-4:2007 https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958e-eeb33743e219/iso-5398-4-2007

Leather — Chemical determination of chromic oxide content —

Part 4:

Quantification by inductively coupled plasma — optical emission spectrometer (ICP-OES)

1 Scope

This part of ISO 5398 describes a method for the determination of chromium in aqueous solution obtained from leather. This is an analysis for total chromium in leather; it is not compound specific or specific to its oxidation state.

This method describes the determination of chromium by inductively coupled plasma – optical emission spectrometry and is applicable to leathers which are expected to have chromic oxide contents in excess of 1 mg/kg. Two techniques for the preparation of the solution to be analysed are included. In the case of dispute, the wet oxidation technique is to be used.

iTeh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following referenced documents are <u>lindispensable</u> for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies 219/iso-5398-4-2007

ISO 2418, Leather — Chemical, physical and mechanical and fastness tests — Sampling location

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods

ISO 4044, Leather — Chemical tests — Preparation of chemical test samples

EN 14602, Footwear — Test methods for the assessment of ecological criteria

ISO 4684, Leather — Chemical tests — Determination of volatile matter

ISO 11885, Water quality — Determination of selected elements by inductively coupled plasma optical emission spectroscopy (ICP-OES)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3 1

chromic oxide content

amount of chromium in leather, determined by this method and reported as chromic oxide

NOTE The chromic oxide content is expressed in milligrams per kilogram (mg/kg), based on dry matter.

4 Principle

The chromium present in the leather is solubilized in the hexavalent state followed by analysis of the solution by inductively coupled plasma – optical emission spectrometer.

5 Sampling and sample preparation

If possible, sample in accordance with ISO 2418 and grind leather in accordance with ISO 4044. If sampling in accordance with ISO 2418 is not possible (an in the case of leathers from finished products like shoes, garments), details about sampling shall be given together with the test report.

Weigh 2 g of the ground leather to the nearest 0,001 g. From every leather, a minimum of two determinations shall be made.

6 Reagents

Unless otherwise stated, only analytical grade chemicals are to be used. The water shall be grade 3 in accordance with ISO 3696:1987. All solutions are aqueous solutions.

6.1 Wet oxidation method

- **6.1.1** Nitric acid, 70 %.
- iTeh STANDARD PREVIEW
- **6.1.2** Sulfuric acid, concentrated (98 %), and perchloric acid (60 % to 70 %), mixed together in the ratio of 1:3 by volume.
- 6.2 ICP-OES

ISO 5398-4:2007

https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958e-

- **6.2.1** Potassium dichromate ($K_2Cr_2O_7$), dried for 16 h \pm 2 h at 102 °C \pm 2 °C.
- **6.2.2 Standard dichromate solution**: dissolve 2,829 g potassium dichromate (6.2.1) in water in a volumetric flask and make up to 1 000 ml with water. 1 ml of this solution contains 1 mg of chromium.

7 Apparatus

Usual laboratory apparatus is required and, in particular, the following.

- **7.1 Conical flask**, 500 ml, with ground glass stopper.
- 7.2 Inductively coupled plasma optical emission spectrometer, as described in ISO 11885.
- **7.3** Filtration device, using glass fibre (GFC) or membrane type filters.
- **7.4** Antibumping granules (or similar) (wet oxidation method).

8 Methods

8.1 Preparation of analytical solution

8.1.1 Wet oxidation method

WARNING — It is imperative that nitric acid is added first because of the possible explosive reaction of perchloric acid with leather.

Accurately weigh a mass of leather (see Clause 5) into the conical flask (7.1). Add 10 ml of nitric acid (6.1.1) and allow to stand for 2 min. Add 15 ml of mixed sulfuric/perchloric acids (6.1.2) and a few antibumping granules (7.4). Place a funnel or splash bulb in the neck of the flask and heat to boiling on a wire gauze over a moderate flame. As soon as the reaction mixture begins to turn orange, lower the flame. After a complete change of colour, heat gently for at least 2 min. Allow to cool in air for 5 min and dilute to approximately 200 ml. Boil for 10 min to eliminate any chlorine.

The use of a sulfuric/perchloric acid mixture is preferred to the use of the individual acids as it prevents the accidental use of perchloric acid alone.

In the case of incomplete oxidation (i.e. the solution does not change to an orange colour), it is permissible to add further mixed sulfuric/perchloric acid to the sample.

8.1.2 Microwave digestion

The sample for analysis can also be prepared through application of microwave-assisted digestion (MAD). If this is to be used, then the procedure described in EN 14602 shall be followed.

(Standards.iten.al)

8.2 Measurement of the aqueous solution

ISO 5398-4:2007

8.2.1 General https://standards.iteh.ai/catalog/standards/sist/e767483a-8d93-4f1c-958e-eeb33743e219/iso-5398-4-2007

Prepare the inductively coupled plasma – optical emission spectrometer (7.2) by following the manufacturer's instructions for adjusting all the instrument's parameters.

Below are some recommended settings; however, ICP manufacturers have their own recommended settings for chromium which should be used when available. For further information, refer to ISO 11885.

Plasma argon flow: 15 l/min

Auxiliary argon flow: 0,5 l/min

Nebulizer argon flow: 0,8 l/min

Power: 1 300 W

Gas: Argon 4.6

Sample flow rate: 1,3 ml/min

Sample flash rate: 4,0 ml/min

Replicates: 3

Peak algorithms: Peak area, 3 points with 2 points background correction

Wavelength: 357 nm, 869 nm

© ISO 2007 – All rights reserved