

SLOVENSKI STANDARD
SIST-TP CEN ISO/TR 13624-2:2014
01-januar-2014

**Industrija za predelavo nafte in zemeljskega plina - Vrtalna in proizvodna oprema -
2. del: Metodologija, delovanje in celovita tehnična dokumentacija
globokomorskega vrtanja (ISO/TR 13624-2:2009)**

Petroleum and natural gas industries - Drilling and production equipment - Part 2:
Deepwater drilling riser methodologies, operations, and integrity technical report (ISO/TR
13624-2:2009)

iTeh STANDARD PREVIEW
Erdöl- und Erdgasindustrie - Bohr- und Förderanlagen - Teil 2: Riser für die Tiefsee,
Methodik, Betrieb und technische Dokumentation (ISO/TR 13624-2:2009)

SIST-TP CEN ISO/TR 13624-2:2014
Industries du pétrole et du gaz naturel - Équipement de forage et de production - Partie
2: Méthodologies, opérations et rapport technique d'intégrité relatifs aux tubes
prolongateurs pour forages en eaux profondes (ISO/TR 13624-2:2009)

Ta slovenski standard je istoveten z: CEN ISO/TR 13624-2:2013

ICS:

75.180.10	Oprema za raziskovanje in odkopavanje	Exploratory and extraction equipment
-----------	--	---

SIST-TP CEN ISO/TR 13624-2:2014 en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](#)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

TECHNICAL REPORT
RAPPORT TECHNIQUE
TECHNISCHER BERICHT

CEN ISO/TR 13624-2

October 2013

ICS 75.180.10

English Version

Petroleum and natural gas industries - Drilling and production equipment - Part 2: Deepwater drilling riser methodologies, operations, and integrity technical report (ISO/TR 13624-2:2009)

Industries du pétrole et du gaz naturel - Équipement de forage et de production - Partie 2: Méthodologies, opérations et rapport technique d'intégrité relatifs aux tubes prolongateurs pour forages en eaux profondes (ISO/TR 13624-2:2009)

Erdöl- und Erdgasindustrie - Bohr- und Förderanlagen - Teil 2: Riser für die Tiefsee, Methodik, Betrieb und technische Dokumentation (ISO/TR 13624-2:2009)

This Technical Report was approved by CEN on 24 September 2013. It has been drawn up by the Technical Committee CEN/TC 12.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

STANDARD PREVIEW
(standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](https://standards.iteh.ai/catalog/standards/sist/c50d4efaf-4e7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efaf-4e7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents	Page
Foreword.....	3

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](#)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

Foreword

The text of ISO/TR 13624-2:2009 has been prepared by Technical Committee ISO/TC 67 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" of the International Organization for Standardization (ISO) and has been taken over as CEN ISO/TR 13624-2:2013 by Technical Committee CEN/TC 12 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" the secretariat of which is held by AFNOR.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of ISO/TR 13624-2:2009 has been approved by CEN as CEN ISO/TR 13624-2:2013 without any modification.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](#)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](#)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

TECHNICAL REPORT

ISO/TR
13624-2

First edition
2009-12-01

Petroleum and natural gas industries — Drilling and production equipment —

Part 2: Deepwater drilling riser methodologies, operations, and integrity technical report

iTeh STANDARD PREVIEW

Industries du pétrole et du gaz naturel — Équipement de forage et de production —

*Partie 2: Méthodologies, opérations et rapport technique d'intégrité
relatifs aux tubes prolongateurs pour forages en eaux profondes*

SIST-TP CEN ISO/TR 13624-2:2014

<https://standards.iteh.ai/catalog/standards/sist/c50d4ef0-fc7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

Reference number
ISO/TR 13624-2:2009(E)

© ISO 2009

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](#)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
Introduction.....	v
1 Scope	1
2 Normative references.....	1
3 Terms and definitions	1
4 Abbreviated terms	7
5 Coupled drilling riser/conductor analysis methodology and worked example	7
5.1 Coupled methodology.....	7
5.2 Decoupled methodology.....	7
5.3 Analysis considerations	10
5.4 Model development.....	10
5.5 Coupled riser analysis	19
5.6 Decoupled riser analysis	21
5.7 Worked example	22
5.8 Basis of analysis.....	22
5.9 Model description and analysis procedure	29
5.10 Results.....	30
6 Drift-off/drive-off analysis methodology and worked example	33
6.1 Drift-off analysis methodology	33
6.2 Example	36
7 Recoil analysis methodology and worked example	50
7.1 Introduction.....	50
7.2 Background.....	50
7.3 Required information	57
7.4 Performance criteria.....	64
7.5 Worked example applicability	68
Bibliography.....	88

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.

iTeh STANDARD PREVIEW (standards.iteh.ai)

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 13624-2 was prepared by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries*, Subcommittee SC 4, *Drilling and production equipment*.
 SIST-TP CEN ISO/TR 13624-2:2014
<https://standards.iteh.ai/catalog/standards/sist/c50d4e1a-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

ISO/TR 13624 consists of the following parts, under the general title *Petroleum and natural gas industries — Drilling and production equipment*:

- *Part 1: Design and operation of marine drilling riser equipment*
- *Part 2: Deepwater drilling riser methodologies, operations, and integrity technical report*

Introduction

Since API RP 16Q was issued in 1993, hydrocarbon exploration in 1 200+ m (4 000+ ft) water depths has increased significantly. As a consequence, the need was identified to update that code of practice to address the issues particular to deepwater operations.

Under the auspices of the DeepStar programme, substantial work was commissioned during 1999 and 2000 by the DeepStar Drilling Committee 4502 and led to the development of *Deepwater Drilling Riser Methodologies, Operations, and Integrity Guidelines* in February 2001. Several contractors participated in these efforts. These guidelines were intended to supplement and update the existing API RP 16Q:1993 for deepwater application. In a subsequent joint industry project and in collaboration with DeepStar and the API, these guidelines were later supplemented with other identified revisions and technically edited by an API task group to produce the revision of API RP 16Q:1993 as ISO 13624-1 and the API Technical Report TR1.

This Technical Report is a supplement to the revised API RP 16Q and provides guidance on various analysis methodologies and operating practices.

NOTE The figures have been reproduced as provided by the Technical Committee and, in some cases, contain only USC units.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST-TP CEN ISO/TR 13624-2:2014

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST-TP CEN ISO/TR 13624-2:2014](#)

<https://standards.iteh.ai/catalog/standards/sist/c50d4efa-fe7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

Petroleum and natural gas industries — Drilling and production equipment —

Part 2: Deepwater drilling riser methodologies, operations, and integrity technical report

1 Scope

This part of ISO 13624 pertains to mobile offshore drilling units that employ a subsea BOP stack deployed at the seafloor. It is intended that the drilling riser analysis methodologies discussed in this part of ISO 13624 be used and interpreted in the context of ISO 13624-1.

2 Normative references

ITCH STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

[SIST-TP CEN ISO/TR 13624-2:2014](https://tp.cen-iso.org/13624-2:2014)

ISO 13624-1:2009, [Petroleum and natural gas industries — Drilling and production equipment — Part 1: Design and operation of marine drilling riser equipment](https://standards.itch.ai/catalog/standards/sist/c5044ef4-fc7c-4323-a0cd-1e85002c1843/sist-tp-cen-iso-tr-13624-1-2014)

API RP 16Q:1993, *Design, Selection, Operation and Maintenance of Marine Drilling Riser Systems*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

accumulator

(BOP) pressure vessel charged with gas (e.g. nitrogen) over liquid and used to store hydraulic fluid under pressure for operation of blowout preventers

3.2

accumulator

riser tensioner

pressure vessel charged with gas (e.g. nitrogen) over liquid that is pressurized on the gas side from the tensioner high-pressure gas supply bottles and supplies high-pressure hydraulic fluid to energize the riser tensioner cylinder

3.3

air-can buoyancy

tension applied to the riser string by the net buoyancy of an air chamber created by a closed-top, open-bottom cylinder forming an air-filled annulus around the outside of the riser pipe

ISO/TR 13624-2:2009(E)

3.4**annulus**

space between two pipes, when one pipe is positioned inside the other

3.5**apparent weight****effective weight****submerged weight**

riser weight in air minus buoyancy

NOTE Apparent weight is commonly referred to as weight in water, wet weight, submerged weight or effective weight.

3.6**auxiliary line**

conduit (excluding choke-and-kill lines) attached to the outside of the riser main tube

EXAMPLE Hydraulic supply line, buoyancy-control line, mud-boost line.

3.7**ball joint**

ball-and-socket assembly having a central through passage that has an internal diameter equal to or greater than that of the riser and that may be positioned in the riser string to reduce local bending stresses

3.8**blowout**

uncontrolled flow of well fluids from the well bore

ITEH STANDARD PREVIEW (standards.iteh.ai)

3.9**blowout preventer****BOP**

device attached immediately above the casing, which can be closed to shut in the well
SIST-TP CEN ISO/TR 13624-2:2014
<https://standards.iteh.ai/catalog/standards/sist/c50d4ef4-1e7a-4a33-a0cd-4e85002c18c4/sist-tp-cen-iso-tr-13624-2-2014>

3.10**blowout preventer**

(annular type) remotely controlled device that can form a seal in the annular space around any object in the well bore or upon itself

NOTE Compression of a reinforced elastomer packing element by hydraulic pressure affects the seal.

3.11**BOP stack**

assemblage of well-control equipment, including BOPs, spools, valves, hydraulic connectors and nipples, that connects to the subsea wellhead

NOTE Common usage of this term sometimes includes the lower marine riser package (LMRP).

3.12**box**

female member of a riser coupling, C&K line stab assembly or auxiliary line stab assembly

3.13**buoyancy-control line**

auxiliary line dedicated to controlling, charging or discharging air-can buoyancy chambers

3.14**buoyancy modules**

devices added to riser joints to reduce their apparent weight, thereby reducing riser top tension requirements

3.15**choke-and-kill lines****C&K lines****kill line**

external conduits arranged laterally along the riser pipe and used for circulation of fluids into and out of the well bore to control well pressure

3.16**control pod**

assembly of subsea valves and regulators that, when activated from the surface, directs hydraulic fluid through special porting to operate BOP equipment

3.17**coupling**

mechanical means of joining two sections of riser pipe in an end-to-end engagement

3.18**diverter**

device attached to the wellhead or marine riser to close the vertical flow path and direct well flow away from the drill floor and rig

3.19**drift-off**

unplanned lateral move of a dynamically positioned vessel off its intended location relative to the wellhead, generally caused by loss of either stationkeeping control or propulsion

iTeh STANDARD PREVIEW (standards.iteh.ai)

3.20**drilling fluid****mud**

water- or oil-based fluid circulated down the drillpipe into the well and back up to the rig for purposes including containment of formation pressure, the removal of cuttings, bit lubrication and cooling, treating the wall of the well and providing a transmission medium for well data

3.21**drive-off**

unplanned move of a dynamically positioned vessel off location driven by the vessel's main propulsion or stationkeeping thrusters

3.22**dynamic positioning**

automatic stationkeeping computerized means of maintaining a vessel on location by selectively driving and/or directing thrusters

3.23**effective tension**

axial tension that is calculated at any point along a riser in water considering only the top tension and the apparent weight of the riser and its contents

NOTE See ISO 13624-1:2009, 5.4.3, and Sparks, 1984.

3.24**factory acceptance testing****FAT**

testing by a manufacturer of a particular product to validate its conformance to performance specifications and ratings