INTERNATIONAL STANDARD

First edition 2005-11-01

Graphic technology — Process control for the production of half-tone colour separations, proofs and production prints —

Part 4:

iTeh STRublication gravure printing

(Strechnologie graphique — Contrôle des processus de confection de sélections couleurs tramées, d'épreuves et de tirages —

Partie 4: Processus de gravure https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-5113379171bf/iso-12647-4-2005

Reference number ISO 12647-4:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12647-4:2005</u> https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-5113379171bf/iso-12647-4-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Fore	orewordiv						
Intro	oduction	v					
1	Scope	1					
2	Normative references	1					
3	Terms and definitions	2					
4	Requirements	2					
4.1	General	2					
4.2	Data file and printing forme						
4.3	Data file and printing forme Proof or production print	4					
5	Reporting of printing conditions	6					
Anne	ex A (normative) Gamut types	8					
Bibli	iography	13					

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12647-4:2005</u> https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-5113379171bf/iso-12647-4-2005

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 12647-4 was prepared by Technical Committee ISO/TC 130, Graphic technology.

ISO 12647 consists of the following parts, under the general title Graphic technology — Process control for the production of half-tone colour separations, proofs and production prints:

(standards.iteh.ai)

- Part 1: Parameters and measurement methods
- Part 2: Offset lithographic processes https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-
- Part 3: Coldset offset lithography on newsprint
- Part 4: Publication gravure printing
- Part 5: Screen printing
- Part 6: Flexographic printing
- Part 7: Off-press proofing process working directly from digital data

Introduction

The purposes of ISO 12647-1 are

- to list and explain the minimum set of primary process parameters required to uniquely define the visual characteristics and related technical properties of a half-tone proof or production print produced from digital data directly or via a set of half-tone separation films;
- to give the definitions for the general terms necessary for process control;
- to describe the measurement methods and the requirements for reporting the results.

This part of ISO 12647 lists values or sets of values of the primary parameters specified in ISO 12647-1 and related technical properties of a gravure publication print. Where deemed useful, secondary parameters are also specified.

The purpose of a proof print is to simulate the visual characteristics of the finished print product as closely as possible. In order to visually match a particular print, off-press proofing processes may require values for solid tone coloration and tone value increase which are different from those of the printing process they are meant to simulate. This is caused by differences in phenomena such as gloss, light scatter (within the print substrate or the colorant), metamerism and transparency. Such differences are tikely for those off-press proofing processes in which the print substrate, the colorants and the technology for applying them are significantly different from gravure press printing. In such cases the user of the supplier should ensure that appropriate corrections are specified. Another problem area is the matching of a digital off-press proof to a double-sided print on a less-than-opaque, lightweight printing paper as used in publication gravure printing. If it is deemed necessary, for image quality reasons, to proof with colour management profiles based on measurements with substrate backing rather than black backing, there will be an unavoidable difference between proof and production prints. This fact needs to be communicated to all parties concerned.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12647-4:2005</u> https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-5113379171bf/iso-12647-4-2005

Graphic technology — Process control for the production of half-tone colour separations, proofs and production prints —

Part 4: **Publication gravure printing**

1 Scope

This part of ISO 12647 specifies a number of process parameters and their values to be applied to four-colour publication gravure printing. The parameters and values are chosen in view of the complete process covering the process stages "colour separation", "making of the printing forme", "proof production" and "production printing".

This part of ISO 12647 is applicable

- directly, to publication gravure printing, including magazines, catalogues and commercial materials;
- directly, to halftone and continuous tone proofing processes that predict the colorimetric results of gravure printing;

ISO 12647-4:2005

- by analogy, to process-colour grayure package printing 5a4195-40f1-4038-9379-

5113379171bf/iso-12647-4-2005

It is not applicable to the specifics of the transformations necessary to relate digital input data to the data used to create the cylinder engraving data and/or the proofing process.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the reference document (including any amendments) applies.

ISO 8254-1:1999, Paper and board — Measurement of specular gloss — Part 1: 75 degree gloss with a converging beam, TAPPI method

ISO 12639:2004, Graphic technology — Prepress digital data exchange — Tag image file format for image technology (TIFF/IT)

ISO 12642-1, Graphic technology — Input data for characterization of 4-colour process printing — Part 1: Initial data set

ISO 12647-1:2004, Graphic technology — Process control for the production of half-tone colour separations, proof and production prints — Part 1: Parameters and measurement methods

ISO 15930-4:2003, Graphic technology — Prepress digital data exchange using PDF — Part 4: Complete exchange of CMYK and spot colour printing data using PDF 1.4 (PDF/X-1a)

ISO 15930-5:2003, Graphic technology — Prepress digital data exchange using PDF — Part 5: Partial exchange of printing data using PDF 1.4 (PDF/X-2)

ISO 15930-6:2003, Graphic technology — Prepress digital data exchange using PDF — Part 6: Complete exchange of printing data suitable for colour-managed workflows using PDF 1.4 (PDF/X-3)

Specification ICC:1, *File format for Color profiles (Version 4.1.0)*, International Color Consortium, 1899 Preston White Drive, Reston, VA 20191, USA

3 Terms and definitions

For the purposes of this document, the definitions given in ISO 12647-1 and the following apply.

3.1

improved newsprint

paper with, compared to ordinary newsprint, a higher smoothness, a higher brightness and a filler content up to 20 %

3.2

engraving pitch

Р

reciprocal of average cell spacing on a gravure cylinder, evaluated from the following formula:

$$P = \frac{1}{\sqrt{a \times b}}$$

where

3.3

iTeh STANDARD PREVIEW

- *a* is the distance between the same points on two adjacent cells in the printing direction;
- *b* is the distance between adjacent circumferencial tracks of the engraving stylus.

ISO 12647-4:2005

https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-5113379171bf/iso-12647-4-2005

process colour solid

printed area that corresponds to the maximum cell volume identified for the combination of gravure engraving parameters

4 Requirements

4.1 General

Subclauses 4.2 and 4.3 are based on the assumption that input for gravure printing comprises digital data that defines the data tone values (equivalent to the film tone values in a traditional offset process). These data, wherever practical, represent the characteristics associated with the relationship between the digital data provided and the printed image. The specifics of the transformations necessary to relate these data to the data used to create the cylinder engraving data and/or the proofing process are the responsibility of the organization involved and are not specified in this part of ISO 12647.

The four substrate categories of gravure printing, identified by the paper principally used, defined for this part of ISO 12647, are as follows:

- substrate category S1 (coated paper of 70 g/m² or greater);
- substrate category S2 (lightweight coated paper);
- substrate category S3 (super-calendered paper);
- substrate category S4 (improved or enhanced newsprint).

While these substrate categories of gravure printing are identified in terms of the paper principally used, they may be used on any stock for which the printer is capable of achieving the colours specified in Tables A.1 or A.2, see also Figures A.1 and A.2, and thus the associated colour gamut.

Where appropriate, the applicable clauses of ISO 12647-1 are referenced for the definition of the data and measurement conditions.

Subclauses 4.2 and 4.3 are arranged according to the order set out in ISO 12647-1; they also depend on it for the general principles, the definition of the data, the measurement conditions and the reporting style.

4.2 Data file and printing forme

4.2.1 Digital Data

Digital data files supplied for printing shall conform to latest edition of ISO 15930, parts 4, 5 and 6 or to ISO 12639.

Supplied data files conforming to ISO 12639 shall also include an identification of the intended printing condition. Where the intended printing condition is a printing condition included in the registry of characterizations maintained by the ICC, as described in ICC.1, the name used in the ICC registry may be used as the identification. If the intended printing condition is not included in the ICC registry, characterization data specified using the target defined in ISO 12642, or an ICC output profile derived from it, shall be included. An ICC output profile derived from the appropriate characterization data should also be included in all cases. In any situations where the rendering of the data, when printed, is intended to be other than colorimetric (as specified in ICC.1) an ICC output profile derived from the appropriate characterization data shall be included.

All continuous tone raster data shall be at a resolution that equals or exceeds 120 cm⁻¹. If line work raster data are provided, they shall be at a resolution of three to six times that of the continuous tone data. If text is provided as CT data it should be anti-aliased.

ISO 12647-4:2005

A proof print may accompany digital data and where provided 4tf shall conform to the indicated printing condition. 5113379171bf iso-12647-4-2005

4.2.2 Separation films

Where data are exchanged using half-tone separation films, they shall be accompanied by a proof print that simulates the intended printing condition and that conforms to 4.3. This fact shall be verifiable by measuring well-specified control patches that are printed on the proof print along with the subject.

Where the proof has been prepared directly from the separations the following control patches shall be included as a minimum:

- a) solid primary and secondary colours (including black);
- b) at least one half-tone control patch of each of the primary colours (including black) with tone values between 40 % and 70 %; the tone values used shall be the same for each colour;
- c) a tertiary colour control patch composed of 100 % each of the primary colours (or with magenta and yellow reduced to better approximate a grey);
- d) at least one tertiary colour patch composed of the same tone values as defined in b) (or with magenta and yellow reduced to better approximate a grey).

Where the proof is a simulation of the intended printing condition, and where it has been produced directly from the data used to prepare the separations, the control patches provided shall, as a minimum, simulate the control patches listed above.

4.2.3 Engraving pitch

For four-colour work, the ranges of engraving pitch shall be :

- 54 cm⁻¹ to 70 cm⁻¹ for yellow;
- 60 cm⁻¹ to 80 cm⁻¹ for cyan and for magenta;
- 60 cm⁻¹ to 100 cm⁻¹ for black.

4.2.4 Screen angle

There is no specification.

4.2.5 Cell shape

There is no specification.

4.2.6 Image size tolerance

See 4.3.4.

4.2.7 Tone value sum

Unless otherwise specified, the maximum tone value sum should be 340 %.

NOTE Smaller values can be used but this applies to a lesser extent to uncoated papers.

4.2.8 Grey balance

<u>ISO 12647-4:2005</u>

https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-

A single grey balance condition is usually not sufficient to ensure an achromatic colour for all print substrates, black compositions and printing inks that may be used with a given printing process. The correct grey balance may be determined from the pertinent colour management profile, it may depend on the black composition.

4.3 **Proof or production print**

4.3.1 General

To define the appearance of a print or proof it is necessary, as a minimum, to specify the gloss and colorimetric characteristics of the substrate and inks used for printing, when the inks are printed at the appropriate concentration. These characteristics are defined in 4.3.2 to 4.3.5.

NOTE Printing and measuring the image specified in ISO 12642, basic set, when measured in the 'absolute' colorimetric mode (i.e. relative to the perfect reflecting diffuser), provides the data to ensure conformance with the characteristics specified in 4.3.2.1, 4.3.2.3, 4.3.3 and 4.3.5.

4.3.2 Visual characteristics of image components

4.3.2.1 Print substrate colour

The print substrate used for proofing should be identical to that of the production printing. If this is not possible, the properties of the print substrate should be a close match to that of the production in terms of colour, gloss, type of surface (coated, uncoated, super-calendered, etc.) and mass per area. Table 1 provides aim values for colour as well as other attributes for the substrate categories mentioned in 4.1.

Substrate category	L*a,b	a*a	b*a	Gloss ^c %	Roughness ^d %	Mass per area ^b g/m ²
S1: coated	88 (91) ^e	0 (0)	– 3 (– 3)	65	0,9	80
S2: lightweight coated (LWC)	86 (88) ^e	0 (1))	2 (3)	55	1,1	51
S3: super-calendered	86 (89) ^e	- 1 (0)	3 (4)	20	1,5	52
S4: improved newsprint	83 (84) ^e	- 1 (0)	3 (4)	< 10	3,5	50
Tolerances	е	± 2	± 2	± 10	—	—

Table 1 — CIELAB coordinates, gloss, roughness and tolerances for the substrate categories.

^a Measurement in accordance with ISO 12647-1: D50 illuminant, 2° observer, 0/45 or 45/0 geometry, black backing. Values for white backing conditions are included in brackets.

^b Informative only.

^c Measurement in accordance with ISO 8254-1, TAPPI method, informative only.

^d Measurement in accordance with ISO 8791-4 ^[5], Parker Print-surf, clamping pressure 980 kPa, soft backing, informative only.

The informative L^* value given represents a minimum value.

4.3.2.2 Print substrate gloss

The gloss of the print substrate used for proofing should be a close match to that of the production print substrate. If this is not possible, press proofing may be carried out on the closest match selected from the substrate categories listed in 4.3.2.1.

4.3.2.3 Ink set colours ISO 12647-4:2005

https://standards.iteh.ai/catalog/standards/sist/135a4f95-40f1-4038-9379-

For proof and production printing, the aim value set shall be selected either from the gamut type 1 set or the gamut type 2 set. Both sets are specified in Annex A for four substrate categories, see Tables A.1 and A.2 and Figures A.1 and A.2.

For the digital proof print, the CIELAB ΔE_{ab}^* deviation of the primary colour solids from the corresponding colours of the chosen set, defined by Tables A.1 or A.2 shall not exceed 4.

For the OK print, the CIELAB ΔE_{ab}^* deviation of the primary colours from the corresponding colours of the chosen set, defined by Tables A.1 or A.2 shall not exceed 5.

NOTE 1 If the tolerances of the primary colours of the proof and those of the production prints are being exploited in opposite directions, the maximum ΔE_{ab}^* between them might be 9.

For the production run, the variability of the primary colour solids is restricted by the following condition. For at least 68 % of the production prints, the colour differences from the OK sheet shall not exceed, and should not exceed one half of, the appropriate variation tolerance specified in Table 2.

NOTE 2 The distribution of ΔE_{ab}^* values is not gaussian but skewed. For reasons of consistency, the variation tolerance is defined here as the upper limit for 68 % of the production copies. This is in analogy with a gaussian distribution where 68 % are within plus or minus one standard deviation of the mean.

Table 2 — CIELAB ΔE_{ab}^* variation tolerances for the solids of the process colours

unit: 1

	Black	Cyan	Magenta	Yellow
Variation tolerance	3,5	3,5	3,5	4,5