## INTERNATIONAL STANDARD

First edition 2007-02-01

# Machine tools — Dimensions and geometric tests for self-centring chucks with two-piece jaws —

Part 3:

#### Power-operated chucks with serrated jaws iTeh STANDARD PREVIEW

Machines-outils — Dimensions et essais géométriques pour mandrins à serrage concentrique et à mors rapportés —

Partie 3: Mandrins à commande axiale assistée avec mors à assemblage par dentelure https://standards.iteh.avcatalog/standard/sist/0918/a6f-t35b-427f-b554-221c1993e667/iso-3442-3-2007



Reference number ISO 3442-3:2007(E)

#### PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3442-3:2007</u> https://standards.iteh.ai/catalog/standards/sist/69f87a6f-f35b-427f-b554-221c1993e667/iso-3442-3-2007

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

### Contents

| Forev                                | vord                                                                                                                                                                                                                                      | iv                              |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1                                    | Scope                                                                                                                                                                                                                                     | . 1                             |
| 2                                    | Normative references                                                                                                                                                                                                                      | . 1                             |
| 3<br>3.1                             | Preliminary remarks<br>Measuring units                                                                                                                                                                                                    | . 1<br>. 1                      |
| 3.2<br>3.3                           | Geometric tests<br>Tests to be performed                                                                                                                                                                                                  | . 1<br>. 1                      |
| 4                                    | Precision classes                                                                                                                                                                                                                         | . 1                             |
| 5<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5 | Sizes for interchangeability<br>90° serrations — Dimensions<br>90° serrations — Permissible cumulative pitch deviation<br>60° serrations — Dimensions<br>60° serrations — Permissible cumulative pitch deviation<br>Jaw nuts — Dimensions | . 2<br>. 2<br>. 3<br>. 3<br>. 4 |
| 6<br>6.1<br>6.2<br>6.3<br>6.4        | Geometric tests.<br>Test mandrels <b>I.T.e.h.S.T.A.N.D.A.R.D.PREVIEW</b><br>Spindle or face plate accuracy<br>Chuck body accuracy <b>(Standards.iteh.ai)</b><br>Test with test top jaws (hard jaws).                                      | .5<br>.5<br>.5<br>.5            |
| 6.5<br>6.6<br>6.7                    | Tests with machined top jaws <u>180-3442-3-2007</u><br>Tests off-the-spindledards.iteh.ai/catalog/standards/sist/69/87a6P135b-427Pb554-<br>Chuck accuracy                                                                                 | . 6<br>. 6<br>. 9               |

#### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 3442-3 was prepared by Technical Committee ISO/TC 39, *Machine tools*, Subcommittee SC 8, *Work holding spindles and chucks*.

This first edition of ISO 3442-3, together with ISO 3442-1 and ISO 3442-2, cancels and replaces ISO 3442:1991 and ISO 9401:1991. ISO/TC 39/SC 8 decided to divide ISO 3442:1991 into three parts and to combine them with ISO 9401:1991. When all three parts of ISO 3442 are published, ISO 3442:1991 and ISO 9401:1991 will be withdrawn.

#### ISO 3442-3:2007

ISO 3442 consists of the following parts, under the general title Wachine tools<sup>427</sup> Dimensions and geometric tests for self-centring chucks with two-piece jaws:<sup>1993c667/iso-3442-3-2007</sup>

- Part 1: Manually operated chucks with tongue and groove type jaws
- Part 2: Power-operated chucks with tongue and groove type jaws
- Part 3: Power-operated chucks with serrated jaws

### Machine tools — Dimensions and geometric tests for selfcentring chucks with two-piece jaws —

## Part 3: **Power-operated chucks with serrated jaws**

#### 1 Scope

This part of ISO 3442 specifies 90° and 60° serrations and jaw nuts applicable to 90° and 60° serrations for mounting the top jaws on the base jaws of power chucks, in order to ensure interchangeability. It also describes, with reference to ISO 230-1, the geometric tests for self-centring, power-operated chucks with two or more two-piece jaws (serrated type), and the corresponding tolerances which apply.

#### 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies **ITCS.Iten.al**)

ISO 230-1:1996, Test code for machine tools — Part 1: Geometric accuracy of machines operating under noload or finishing conditions https://standards.iteh.ai/catalog/standards/sist/69f87a6f-f35b-427f-b554-

ISO 965-3, ISO general purpose metric screw threads<sup>442</sup>-Tolerances — Part 3: Deviations for constructional screw threads

#### 3 Preliminary remarks

#### 3.1 Measuring units

All dimensions and tolerances in this part of ISO 3442 are expressed in millimetres.

#### 3.2 Geometric tests

This part of ISO 3442 deals only with the inspection of rotational accuracy of the chuck, the straightening and the centring of workpieces. It does not apply to other dynamic qualities, such as the measurement of lack of balance during rotation, balancing or the measurement of gripping power.

#### 3.3 Tests to be performed

When inspecting a chuck, it is not always necessary to carry out all the tests described in this part of ISO 3442. The users of this part of ISO 3442 may choose those tests which relate to the properties that are of interest to them.

#### 4 Accuracy classes

This part of ISO 3442 specifies only one accuracy class.

#### 5 Sizes for interchangeability

#### 5.1 90° serrations — Dimensions

The sizes for interchangeability are shown in Figure 1 and Table 1.



<sup>a</sup> Any profile contained within the hatched area is acceptable.

#### Figure 1 — 90° serrations

## iTeh STANDARD PREVIEW

| Designation                                                                                                                                                                                                                                        |          |                     | (standal                                                   | as.it                                     | en cheo<br>dimer           | king<br>isions                      |                    |         |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|------------------------------------------------------------|-------------------------------------------|----------------------------|-------------------------------------|--------------------|---------|------|
| Designation                                                                                                                                                                                                                                        | р        | h/2<br>https://stan | r <sub>1</sub> <u>ISO 3</u> 4<br>dards.iteh.ai/catalog/sta | <u>142-2;200'</u><br>nda <b>mib</b> /sist | Z a<br>69 <b>1010</b> 66-: | <i>b</i><br><mark>35max.7f</mark> - | <i>с</i><br>b5max. | $d_1^a$ | е    |
| 1/16" × 90° <sup>b</sup>                                                                                                                                                                                                                           | 1,587 5  | 0,397               | 0,12 to 0,18 <sup>3e66</sup>                               | <sup>7/is</sup> 0,2542                    | -3- <del>0</del> ,64       | 0,71                                | 0,35               | 1,1     | 0,93 |
| $3/32"\times90^\circ$ $^b$                                                                                                                                                                                                                         | 2,3812 5 | 0,595               | 0,15 to 0,25                                               | 0,4                                       | 0,97                       | 1,08                                | 0,57               | 1,65    | 1,4  |
| <sup>a</sup> The pin diameters given are recommended values. If pins of non-standard diameter are used, the manufacturer shall be responsible for recalculating the dimensions such that the form and geometry conform with this part of ISO 3442. |          |                     |                                                            |                                           |                            |                                     |                    |         |      |

1/16" and 3/32" designations are commonly used even though they originate from inch dimensions.

#### 5.2 90° serrations — Permissible cumulative pitch deviation

The permissible deviations are shown in Table 2 in function of the measuring length and the number of teeth, for both  $1/16" \times 90^{\circ}$  and  $3/32" \times 90^{\circ}$  serrations.

|                          |                  | Desig           | nation           |                 |  |  |
|--------------------------|------------------|-----------------|------------------|-----------------|--|--|
| Permissible<br>deviation | 1/16" ×          | 90°             | 3/32" × 90°      |                 |  |  |
|                          | Measuring length | Number of teeth | Measuring length | Number of teeth |  |  |
| ± 0,008                  | 25,4             | 16              | 26,194           | 11              |  |  |
| ± 0,012                  | 50,8             | 32              | 50,006           | 21              |  |  |
| ± 0,016                  | 76,2             | 48              | 76,2             | 32              |  |  |
| ± 0,020                  | 101,6            | 64              | 102,394          | 43              |  |  |
| ± 0,024                  | 127              | 80              | 126,206          | 53              |  |  |
| ± 0,028                  | 152,4            | 96              | 152,4            | 64              |  |  |

Table 2 — Permissible deviations for 90° serrations

b

#### 5.3 60° serrations — Dimensions

The sizes for interchangeability are shown in Figure 2 and Table 3.



<sup>a</sup> Any profile contained within the hatched area is acceptable.

Figure 2 — 60° serrations

## iTeh Stable 3 Dimensions of 60° servations

| Designation                                                                                                                                                                                                                                        |                  | (S                  | tandards.1                                      | ten.a                                            | Cheo<br>dimer | king<br>sions                |                  |         |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|-------------------------------------------------|--------------------------------------------------|---------------|------------------------------|------------------|---------|-------|
| Designation                                                                                                                                                                                                                                        | p<br>https://sta | h/2<br>indards.itel | <u>ISO 3442-3:20</u><br>ai/catalog/standards/si | <u>)7</u> r <sub>2</sub><br>st/6 <b>916</b> 7a61 | a<br>FBMin427 | <i>b</i><br>[-b <b>max</b> . | <i>с</i><br>max. | $d_1^a$ | е     |
| $1,5	imes 60^\circ$                                                                                                                                                                                                                                | 1,5              | 0,65                | 21c10,1267,i20-344                              | 2-30,2407                                        | 0,24          | 0,435                        | 0,502            | 0,866   | 0,65  |
| $3 	imes 60^\circ$                                                                                                                                                                                                                                 | 3                | 1,299               | 0,22 to 0,5                                     | 0,42                                             | 0,42          | 0,780                        | 0,901            | 1,732   | 1,299 |
| <sup>a</sup> The pin diameters given are recommended values. If pins of non-standard diameter are used, the manufacturer shall be responsible for recalculating the dimensions such that the form and geometry conform with this part of ISO 3442. |                  |                     |                                                 |                                                  |               |                              |                  |         |       |

#### 5.4 60° serrations — Permissible cumulative pitch deviation

The permissible deviations are shown in Table 4 in function of the measuring length and the number of teeth, for both  $1,5 \times 60^{\circ}$  and  $3 \times 60^{\circ}$  serrations.

|                          | Designation      |                 |                  |                 |  |  |  |  |  |
|--------------------------|------------------|-----------------|------------------|-----------------|--|--|--|--|--|
| Permissible<br>deviation | 1,5 × 60         | D°              | 3 × 60°          |                 |  |  |  |  |  |
|                          | Measuring length | Number of teeth | Measuring length | Number of teeth |  |  |  |  |  |
| ± 0,008                  | 30               | 20              | 30               | 10              |  |  |  |  |  |
| $\pm$ 0,013              | 60               | 40              | 60               | 20              |  |  |  |  |  |
| $\pm$ 0,018              | 90               | 60              | 90               | 30              |  |  |  |  |  |
| $\pm$ 0,023              | 120              | 80              | 120              | 40              |  |  |  |  |  |
| $\pm$ 0,028              | 150              | 100             | 150              | 50              |  |  |  |  |  |

#### Table 4 — Permissible deviations for 60° serrations

#### 5.5 Jaw nuts — Dimensions

The sizes for interchangeability are shown in Figure 3 and Table 5, in function of the nominal size of the chuck and the corresponding serration adopted.



Figure 3 — Jaw nuts

| Nominal diameter of chuck $d_{\sf nom}$               |                       | 100 | 125          | 160              | 200 | 250 | 315 | 400         | 500              | 630  | 800  |
|-------------------------------------------------------|-----------------------|-----|--------------|------------------|-----|-----|-----|-------------|------------------|------|------|
|                                                       | <i>d</i> <sub>2</sub> | 10  | 12           | 14               | 17  | 21  | 21  | 25,5        | 25,5             | 25,5 | 25,5 |
| law nut                                               | <i>t</i> <sub>2</sub> | 2,5 | 2,5          | 2,5              | 2,5 | 2,5 | 2,5 | 3,5         | 3,5              | 3,5  | 3,5  |
| Jaw nut                                               | t <sub>1</sub>        | 4,5 | 4,5          | 4,5              | 4,5 | 4,5 | 4,5 | 5,5         | 5,5              | 5,5  | 5,5  |
|                                                       | $d_3^{a}$             | M6  | M8           | M10              | M12 | M16 | M16 | M20         | M20              | M20  | M20  |
| Designation of the se                                 |                       |     | 1/16"<br>1,5 | ' × 90°<br>× 60° |     |     |     | 3/32<br>3 > | " × 90°<br>< 60° |      |      |
| <sup>a</sup> Tolerance of thread, 6H (see ISO 965-3). |                       |     |              |                  |     |     |     |             |                  |      |      |

Table 5 — Dimensions of jaw nuts

#### 6 Geometric tests

#### 6.1 Test mandrels

The test mandrels shall be manufactured from solid steel and hardened to avoid damage to external surface due to the gripping force of the chuck. The test mandrel diameter should be approximately equal to 20 % of the nominal chuck diameter or as agreed between the manufacturer and the user. The accuracy of test mandrels used shall be as specified in ISO 230-1:1996, A.3, for test mandrels of similar diameters.



#### 6.2 Spindle or face plate accuracy

For the geometric tests which involve chuck rotation, the chuck should be mounted on a test spindle either directly or by means of a chuck adaptor. The radial run-out on the outside diameter of the spindle or face plate, and the camming at any point on its face, shall have been previously checked as in G01 and G02.

#### 6.3 Chuck body accuracy

Tests G1 and G2 refer to the accuracy of the body only. The tests should be carried out without clamping force.

#### 6.4 Test with test top jaws (hard jaws)

The geometric test shall be performed using test jaws with flat nose, machined off the chuck, case hardened (60 HRC to 62 HRC) to allow them to withstand the clamping forces without permanent distortion.

The clamping force shall be at the level of 67 % (2/3) of the maximum gripping force for that chuck.

The functional dimensions for a set of test jaws shall be within 0,005 mm (see Figure 4).

#### 6.5 Tests with machined top jaws

Tests G5 and G6 are performed with a set of top jaws mounted, paired, marked and machined in assembly with the base jaws on the chuck. The top jaws are machined both on the clamping surfaces and on the axial part locating surfaces, under clamped conditions.

The clamping force, for machining of the top jaws and for performing tests G5 and G6, shall be at the level of 67 % (2/3) of the maximum clamping force for that chuck.

These tests show the maximum possible accuracy of the chuck clamping as long as the top and base jaws are kept paired together as machined. Switching the top and base jaws will in most cases diminish the clamping accuracy of the chuck (unless G3 shows perfect compliance).

These tests are used to validate the accuracy of the chuck for a given diameter.

#### 6.6 Tests off-the-spindle

Tests G7 and G8 do not require use of the test spindle mentioned in 6.2.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3442-3:2007</u> https://standards.iteh.ai/catalog/standards/sist/69f87a6f-f35b-427f-b554-221c1993e667/iso-3442-3-2007

