INTERNATIONAL STANDARD

ISO 13366-1

IDF 148-1

Second edition 2008-02-15

Milk — Enumeration of somatic cells —

Part 1: Microscopic method (Reference method)

Lait — Dénombrement des cellules somatiques —

Partie 1: Méthode au microscope (Méthode de référence)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13366-1:2008</u> https://standards.iteh.ai/catalog/standards/sist/e5b0ab6e-4361-406c-ae24ab0c75e80013/iso-13366-1-2008

Reference numbers ISO 13366-1:2008(E) IDF 148-1:2008(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor the IDF accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and IDF national committees. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13366-1:2008</u> https://standards.iteh.ai/catalog/standards/sist/e5b0ab6e-4361-406c-ae24ab0c75e80013/iso-13366-1-2008

COPYRIGHT PROTECTED DOCUMENT

© ISO and IDF 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO or IDF at the respective address below.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

International Dairy Federation Diamant Building • Boulevard Auguste Reyers 80 • B-1030 Brussels Tel. + 32 2 733 98 88 Fax + 32 2 733 04 13 E-mail info@fil-idf.org Web www.fil-idf.org

Contents

Forewo	ord	iv
Forewo	ord	v
1	Scope	1
2	Terms and definitions	1
3	Principle	1
4 4.1 4.2	Reagents Dye solutions Phosphate Buffer Solution (PBS)	1
5	Apparatus	4
6	Sampling	4
7 7.1 7.2	Preparation of test sample Storage Preparation	4
8 8.1 8.2	Procedure	5 5 6
9 9.1 9.2 9.3 9.4	Calculation and expression of results Rectangular shape counting in <u>successive fields</u> Rectangular shape counting in <u>bands</u> darksist/550ab(e-436)-406e-ac24 Circular shape counting in <u>successive fields</u> 66-1-2008. Expression of results	10 10 11 11
10 10.1 10.2	Precision Repeatability Reproducibility	12
11	Test report	13
Annex	A (informative) Collaborative trial	14
Annex	B (informative) Staining for goats' milk	15
Annex	C (informative) Poisson distribution	16
Bibliog	jraphy	17

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13366-1|IDF 148-1 was prepared by Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products*, and the International Dairy Federation (IDF). It is being published jointly by ISO and IDF.

This second edition of ISO 13366-1|IDF 148-1 cancels and replaces the first edition (ISO 13366-1:1997), of which it constitutes a technical revision.

ISO 13366 consists of the following parts, under the general title Milk — Enumeration of somatic cells: https://standards.iteh.ai/catalog/standards/sist/e5b0ab6e-4361-406c-ae24-

— Part 1: Microscopic method (Reference method)

— Part 2: Guidance on the operation of fluoro-opto-electronic counters

Foreword

IDF (the International Dairy Federation) is a non-profit organization representing the dairy sector worldwide. IDF membership comprises National Committees in every member country as well as regional dairy associations having signed a formal agreement on cooperation with IDF. All members of IDF have the right to be represented at the IDF Standing Committees carrying out the technical work. IDF collaborates with ISO in the development of standard methods of analysis and sampling for milk and milk products.

Draft International Standards adopted by the Action Teams and Standing Committees are circulated to the National Committees for voting. Publication as an International Standard requires approval by at least 50 % of the IDF National Committees casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. IDF shall not be held responsible for identifying any or all such patent rights.

ISO 13366-1|IDF 148-1 was prepared by the International Dairy Federation (IDF) and Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products*. It is being published jointly by IDF and ISO.

All work was carried out by the Joint ISO-IDF Action Team *Automated methods* of the Standing Committee on *Quality assurance, statistics of analytical data and sampling* under the aegis of its project leaders, Mrs. S. Orlandini (IT) and Mr. H.J.C.M. van den Bijgaart (NL).

This edition of ISO 13366-1|IDF 148-1 cancels and replaces IDF 148A:1995.

ISO 13366 consists of the following parts, under the general title *Milk* — *Enumeration of somatic cells*: https://standards.iteh.ai/catalog/standards/sist/e5b0ab6e-4361-406c-ae24-

— Part 1: Microscopic method (Reference method) 13366-1-2008

— Part 2: Guidance on the operation of fluoro-opto-electronic counters

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13366-1:2008</u> https://standards.iteh.ai/catalog/standards/sist/e5b0ab6e-4361-406c-ae24ab0c75e80013/iso-13366-1-2008

Milk — Enumeration of somatic cells —

Part 1: Méthode au microscope (Méthode de référence)

1 Scope

This part of ISO 13366|IDF 148 specifies a microscopic method (reference method) for the counting of somatic cells in both raw and chemically preserved milk.

This part of ISO 13366|IDF 148 is applicable for the counting of somatic cells in cows' milk, provided that the eventually mentioned prerequisites are met.

This method is suitable for preparing standard test samples and determining reference method values that are required for calibrating mechanized and automated cell-counting methods.

WARNING — The use of this standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

<u>ISO 13366-1:2008</u>

2 Terms and definitions aboc75e80013/iso-13366-1-2008

For the purposes of this document, the following terms and definitions apply.

2.1

somatic cells

those cells with nuclei, that is all leucocytes and epithelial cells, determined according to the procedure described in this part of ISO 13366|IDF 148

3 Principle

A test portion of milk to be examined is spread over a slide to form a smear. The smear is dried. During this process, the cells are stained. Subsequently, the stained cells are counted using a microscope. The number of cells counted in a defined area are multiplied by a working factor, to give the number of cells per millilitre.

4 Reagents

Use only reagents of recognized analytical grade, unless otherwise specified, and distilled or deionized water or water of equivalent purity.

4.1 Dye solutions

WARNING — Tetrachloroethane is poisonous. Ethidium bromide is mutagenic. Proper actions for deactivation should be taken in case of spilling. Preparation and application of the dye solution shall be carried out in a fume cupboard, using protective equipment.

4.1.1 Modified Newman-Lampert stain solution (Levowitz-Weber modification)

4.1.1.1 Components

Ethanol, 95 % (volume fraction)	54,0 ml
Tetrachloroethane ^a	40,0 ml
Methylene blue	0,6 g
Acetic acid, glacial	6,0 ml
^a Xylene can be used as an alternative in the same volume amount as mentioned for tetrachloroethane.	

4.1.1.2 Preparation

Mix the ethanol and the tetrachloroethane and stopper the bottle. Heat the mixture in a water bath (5.1) set at 65 °C. Add the methylene blue under a fume cupboard and carefully mix. Cool the mixture in a refrigerator to 4 °C.

Then add the glacial acetic acid and carefully mix again. Pass the obtained solution through an appropriate filter (5.2) into an airtight bottle and store it as such.

Filter the Newman-Lampert stain solution again before use.

4.1.2 Ethidium bromide stain solution (standards.iteh.ai)

4.1.2.1 Stain stock solution

	• •••	<u>ISO 13366-1:2008</u>
4.1.2.1.1	2.1.1 Composition	https://standards.iteh.ai/catalog/standards/sist/e5b0ab6e-4361-406c-ae24-
		<u>ab0c75e</u> 80013/iso-13366-1-2008

	abuc / seð
Ethidium bromide	0,25 g
Demineralized water	100 ml

4.1.2.1.2 Preparation

Dissolve the ethidium bromide in demineralized water preheated to 40 °C. Cool the solution to room temperature. Adjust to 100 ml with demineralized water.

The ethidium bromide stain stock solution can be kept for two months at a maximum when stored in the dark at 2 °C \pm 2 °C.

4.1.2.2 Buffer solution

4.1.2.2.1 Composition

Potassium hydrogenphthalate	0,51 g
Potassium hydroxide	0,162 g
Demineralized water	100 ml

4.1.2.2.2 Preparation

Separately dissolve the potassium hydrogenphthalate and the potassium hydroxide in the demineralized water.

The buffer solution can be kept for two months at a maximum when stored in the dark at 2 °C \pm 2 °C.

4.1.2.3 Ethidium bromide stain working solution

4.1.2.3.1 Components

Ethidium bromide stain stock solution ^a (4.1.2.1)	2 ml
Buffer solution (4.1.2.2)	8 ml
Triton X-100	0,1 ml
Demineralized water	90 ml
^a A high temperature may reduce the staining ethidium bromide.	capability of

4.1.2.3.2 Preparation

Successively add the ethidium bromide stain stock solution, the buffer solution and the Triton X-100 to the demineralized water and carefully mix.

Freshly prepare the ethidium bromide stain working solution directly before use.

4.2 Phosphate Buffer Solution (PBS)

4.2.1 Component	s (standards.iteh.ai)
NaCl	8 g ISO 13366-1:2008
KCI	https://standards.iteh.ai/catalog/9andards/sist/e5b0ab6e-4361-406c-ae24-
Na ₂ HPO ₄ ·7H ₂ O	ab0c7jef80j3/iso-13366-1-2008
KH ₂ PO ₄	0,2 g
Demineralized wate	er 1 000 ml

4.2.2 Preparation

Dissolve the salts in demineralized water. Adjust to 1 000 ml with the remaining demineralized water.

Adjust the pH to 7,2 \pm 0,1.

NOTE It is also possible to use a commercially available phosphate buffer solution with pH = 7,2.

5 Apparatus

Usual laboratory equipment and, in particular, the following.

5.1 Water baths, capable of maintaining a temperature of 40 °C \pm 2 °C, 50 °C \pm 2 °C and 65 °C \pm 2 °C.

5.2 Filter, resistant to the solvents used, with a pore size of 10 μ m to 12 μ m.

5.3 Microscope, with a magnification of 500× to 1 000×. Objectives for oil immersion can be used.

When using ethidium bromide, the microscope shall have fluorescence equipment.

5.4 Microsyringe, for dispensing a fixed volume of 0,01 ml of milk, with a maximum tolerance of 2 %.

5.5 Micrometer, to be certified.

5.6 Slides, premarked with an outline shape (rectangular or circular), with an area of $1 \text{ cm}^2 \pm 5 \%$ (95 mm² to 105 mm²), or a standard slide with a template of dimensions 20 mm × 5 mm or having a diameter, *d*, of 11,28 mm.

5.6.1 Selection of slides

Preferably, work with a fixed premarked area or a template, in order to avoid the recalculation of the working factor with each counting.

5.6.2 Shapes

iTeh STANDARD PREVIEW

For a rectangular shape, the upper and lower internal widths, on the one hand, and the left and right internal heights, on the other hand, should not differ by more than 0,2 mm. ISO 13366-1:2008

For a circular shape, the vertical and horizontal/internal diameters should not differ by more than 0,2 mm. ab0c75e80013/iso-13366-1-2008

6 Sampling

A representative sample should have been sent to the laboratory. It should not have been damaged or changed during transport or storage.

Sampling is not part of the method specified in this part of ISO 13366|IDF 148. A recommended sampling method is given in ISO 707|IDF 50.

If using automatic samplers, they shall have been validated properly.

7 Preparation of test sample

7.1 Storage

Prior to testing or preservation, store the test samples at a temperature of 4 °C \pm 2 °C.

Analyse the test samples within 6 h after sampling. In the case of longer storage, add chemical preservatives such as boric acid, bronopol or potassium dichromate. The final concentration of boric acid shall not exceed 0,6 g per 100 ml of test sample. The final concentration of bronopol shall not exceed 0,05 g per 100 ml of test sample. The final concentration of potassium dichromate shall not exceed 0,1 g per 100 ml of test sample. Store the thus preserved test samples at a temperature of 4 °C \pm 2 °C for no longer than 6 days.

For environmental reasons, it is recommended to restrict the use of potassium dichromate to samples that require a long shelf life only.

7.2 Preparation

Heat the test sample (see 7.1) in a water bath (5.1) set at 40 °C. Mix the test sample carefully. Cool the sample to the temperature at which the microsyringe (5.4) has been calibrated, for example to 20 °C.

Dilute test samples with an estimated somatic cell count of above 1 000 000 cells/ml with a phosphate buffer solution (4.2) to obtain a somatic cell count of about 500 000 cells/ml for each diluted test sample.

$$d = \frac{V_{\rm s}}{V_{\rm s} \times V_{\rm b}}$$

where

- is the dilution factor to obtain an appropriate somatic cell account in the test sample of about d 500 000 cells/ml:
- V_{s} is the volume, in ml, of the test sample;
- $V_{\rm b}$ is the volume, in ml, of the buffer used for diluting the test sample.

Record the required dilution factor, d, the volume of test sample, V_s , and the volume of buffer, V_h , used to obtain the required dilution.

iTeh STANDARD PREVIEW Procedure 8

Prepare, for each test sample, at least two smears and count the best one (e.g. a smear not damaged by the dyeing process). Dip the slides (5.6) in ethanol (of volume fraction 95 %). Flame and cool.

ISO 13366-1:2008

8.1 Preparation of the smear and staining ab0c75e80013/iso-13366-1-2008

Follow either 8.1.1 or 8.1.2 for preparation of the smear and staining.

NOTE Staining for goats' milk is described in Annex B.

8.1.1 Preparation of the smear and staining with Newman-Lampert stain solution

Using the microsyringe (5.4), take 0,01 ml of the test sample (eventually diluted) (see 7.2). Rinse the microsyringe with the test sample. If necessary, carefully and gently clean the outside of the microsyringe which has been in contact with the test sample.

Place the mixture on a clean slide with an area of 1 cm^2 (5.6). Using the needle, spread the test sample evenly over the entire area defined, while ensuring that the area close to the perimeter is evenly covered. Dry the smear at room temperature until it is completely dry.

Dip the dried smear on the slide in the modified Newman-Lampert stain solution (4.1.1) for at least 15 min. Dry the smear at ambient temperature.

Then dip the smear gently in tap water until all surplus dye is washed away. Dry again and store with a protection against dust.