INTERNATIONAL STANDARD

ISO 6145-11

First edition 2005-10-15

Gas analysis — Preparation of calibration gas mixtures using dynamic volumetric methods —

Part 11: Electrochemical generation

iTeh STANDARD PREVIEW Analyse des gaz — Préparation des mélanges de gaz pour étalonnage (stàl'aide de méthodes volumétriques dynamiques —

Partie 11: Génération électrochimique ISO 6145-11:2005 https://standards.iteh.ai/catalog/standards/sist/dba8ff37-5e3f-4a05-a6da-1f22a012d128/iso-6145-11-2005

Reference number ISO 6145-11:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6145-11:2005</u> https://standards.iteh.ai/catalog/standards/sist/dba8ff37-5e3f-4a05-a6da-1f22a012d128/iso-6145-11-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewo	ordiv	v
Introdu	iction	v
1	Scope	1
2	Normative references	1
3 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.5 3.5.1 3.5.2 3.5.3	Procedure Principle	22223333334
4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3	Uncertainty evaluation STANDARD PREVIEW Introduction Sources of uncertainty (standards.iteh.ai) Complementary gas flow Gas generation Absorption of generated gas in the cell electrolyte Effect of moisture content hai/catalog/standards/sist/dba8ff37-5e3f-4a05-a6da- Effect of temperature	566666677
5	Electrochemical cell design	7
Annex	A (informative) Example of a commercial electrochemical cell	9
Annex Annex	B (informative) Schematics of electrolytic cells used for gas generation	1 2 3
Bibliog	raphy	4

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6145-11 was prepared by Technical Committee ISO/TC 158, Analysis of gases.

ISO 6145 consists of the following parts, under the general title Gas analysis - Preparation of calibration gas mixtures using dynamic volumetric methods:

Part 1: Methods of calibration

(standards.iteh.ai)

ISO 6145-11:2005

Part 2: Volumetric pumps https://standards.iteh.ai/catalog/standards/sist/dba8ff37-5e3f-4a05-a6da-

- Part 4: Continuous syringe injection method
- Part 5: Capillary calibration devices
- Part 6: Critical orifices
- Part 7: Thermal mass-flow controllers
- Part 8: Diffusion method
- Part 9: Saturation method
- Part 10: Permeation method
- Part 11: Electrochemical generation

Part 3 to ISO 6145, entitled Periodic injections into a flowing gas stream, has been withdrawn by Technical Committee ISO/TC 158, Analysis of gases.

Introduction

This part of ISO 6145 is one of a series of standards dealing with the various dynamic volumetric methods used for the preparation of calibration gas mixtures.

Electrochemical gas generation can be used to produce calibration gas mixtures containing calibration components which, because of their corrosive nature or low content, are unlikely to be stable in high-pressure cylinders.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6145-11:2005</u> https://standards.iteh.ai/catalog/standards/sist/dba8ff37-5e3f-4a05-a6da-1f22a012d128/iso-6145-11-2005

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6145-11:2005</u> https://standards.iteh.ai/catalog/standards/sist/dba8ff37-5e3f-4a05-a6da-1f22a012d128/iso-6145-11-2005

Gas analysis — Preparation of calibration gas mixtures using dynamic volumetric methods —

Part 11: Electrochemical generation

1 Scope

This part of ISO 6145 specifies a method for the preparation of calibration gas mixtures by using electrochemical generation of a calibration component and introduction into a complementary gas flow. By alteration of the gas flow or the charge passed through the cell electrolyte, it is possible to change the composition of the gas mixture. The relative expanded uncertainty of the calibration gas content, *U*, obtained by multiplying the relative combined standard uncertainties by a coverage factor, k = 2, is not greater than 5 %.

The method described in this part of ISO 6145 is intended to be applied to the preparation of calibration gas mixtures in the volume fraction ranges $(0, 1 \text{ to } 250) \times 10^{-6}$. PREVIEW

NOTE 1 Gases that can be produced by electrochemical generation are oxygen (O_2) , hydrogen (H_2) , hydrogen cyanide (HCN), hydrogen sulfide (H_2S) , chlorine (Cl_2) , bromine (Br_2) , chlorine dioxide (ClO_2) , ammonia (NH_3) , nitric oxide (NO), nitrogen (N_2) , carbon dioxide (CO_2) , phosphine (PH_3) , arsine (AsH_3) and ozone (O_3) .

NOTE 2 The merits of the method are that a stable calibration bas mixture can be quickly prepared within minutes. 1f22a012d128/iso-6145-11-2005

NOTE 3 Gas blending systems based on electrochemical generation and thermal mass flow controllers, with the facility of computerization and automatic control, are commercially available. An example is given in Annex A.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6143, Gas analysis — Comparison methods for determining and checking the composition of calibration gas mixtures

ISO 6145-1, Gas analysis — Preparation of calibration gas mixtures using dynamic volumetric methods — Part 1: Methods of calibration

ISO 6145-7:2001, Gas analysis — Preparation of calibration gas mixtures using dynamic volumetric methods — Part 7: Thermal mass-flow controllers

3 Procedure

3.1 Principle

Electrochemical gas generation is a fundamental method in which the quantity of the calibration gas component generated is proportional to the charge passed. The proportionality factor is the reciprocal of the Faraday constant [the electrical charge carried by one mole of electrons (or singly charged ions)], which is equal to the product of the Avogadro constant (N_A) and the charge of an electron (–*e*).

$$F = N_{\mathsf{A}} \cdot e$$

where

F is 96 485,341 5 C/mol with a relative uncertainty of $4,0 \times 10^{-8}$ (see References [1], [2] and [3]).

The passage of accurately determined electrical current through a cell determines the gas output provided the conditions given in Clause 5 are applied.

3.2 Complementary gas

The flow rate of complementary gas shall be determined by one of the methods given in ISO 6145-1.

3.3 Electrolytic systems for gas generation

Table 1 lists some examples of gases which can be prepared in quantitative yield by direct electrolysis, using platinum and other electrodes. Also included is an example of the suppression of an unwanted constituent by adsorption on activated carbon surrounding the appropriate electrode.

ISO 6145-11:2005

Table 1^{and} Electrolysis systems for gas generation^{5-a6da-}

Gas required	Electrolysis system	Gas liberated at other electrode	Yield mole of required gas per charge numerically equal to Faraday number		
O_2 or H_2	Pt, H ₂ SO ₄ , Pt	H_2 or O_2	1/4 (O ₂)		
	Pt, K ₂ SO ₄ , Pt		1/2 (H ₂)		
	Pt, KOH, Pt				
O ₂	Pt, H ₂ SO ₄ , Hg ₂ SO ₄ , +C, Hg	nil	1/4		
	Pt, neutral solution, active C				
	Pt, KOH, HgO, +C, Hg				
	Pt, KOH, CdO, Cd				
N ₂	Pt, N ₂ H ₄ , H ₂ SO ₄ , Pt	H ₂	1/4		
Cl ₂	Pt, NaCl, Pt	H ₂	1/2		
CO ₂	Pt, $H_2C_2O_4$, Pt	H ₂	1		
NO	Pt, (NOH)SO ₄ , + H ₂ SO ₄ , Pt ^a	0 ₂	1		
^a This system has also been used for the generation of nitrogen dioxide ^[4] .					

(1)

3.4 Apparatus

3.4.1 Cell construction

Cell construction shall be designed to ensure that the generated calibrated component is transferred into the complementary gas stream at maximum efficiency suitable for calibration purposes. Some of the conditions that shall be fulfilled for the operation of an electrolytic cell used for this purpose are given in Clause 5. Examples of electrolytic cells are given in Figures B.1 and B.2.

3.4.2 Current supply and gas flow control

3.4.2.1 The content of the calibration gas produced from the system is dependent on three factors:

- a) the current supplied through the cell which generates a volume flow rate of the calibration gas component;
- b) the (volume) flow rate of the complementary gas; and
- c) the cell efficiency.

NOTE Cell efficiency is the fraction recovery of calibration component over the calculated quantity generated by the current supplied to the cell (see 4.2.3). It depends on the design of the cell. Practical hints on design are given in Clause 5 and an example is given in Annex C.

3.4.2.2 A battery, capable of supplying voltage in the range $0.5 \vee to 1.0 \vee$, and a milliamperemeter with a measurement range of 0.5 mA to 5.0 mA with an uncertainty of 1.0 %, are suitable. DC generators are an alternative but may pass an AC ripple, which can affect the electrolysis process.

3.4.2.3 A flow measuring unit (e.g. a thermal mass-flow meter) that has been calibrated for the complementary gas between a volume flow rate of 0,2 l/min and 5,0 l/min with an uncertainty of 1 % is suitable.

ISO 6145-11:2005

NOTE Methods for the measurement of the flow rate of the complementary gas are given in ISO 6145-1, which also describes the procedure for calibration of the thermal mass-flow meter

3.5 Gas mixture preparation

3.5.1 Complementary gas

The calibration gas mixture shall be prepared by passing the chosen complementary gas through the calibrated thermal mass flow controller, set at known flow, through the cell. If the complementary gas is air, the supply to the controller may be managed with a small air pump. Other complementary gases may be chosen by using a regulated supply from a high-pressure cylinder to the controller. The complementary gas shall be allowed to purge out the cell for 2 min and then the cell voltage supply required for the electrolysis shall be switched on.

The purity of the complementary gas shall be established before use, particularly with regard to any impurities that may cross respond or react with the gas being generated. If pumped air is chosen as the complementary gas, then suitable purification shall be used to remove any interfering substances.

3.5.2 Voltage supply

The applied voltage to the cell from the battery shall be slowly increased to the point at which gas bubbles appear at the electrode. The value at that point is termed the decomposition potential. This is the point at which electrolysis occurs and the calibration component is produced at its electrode. The reading of the milliamperemeter is noted when the value has become stable. Decomposition potentials for various electrolytes are given in Table D.1.

Different values of the content of the calibration gas mixture can now be obtained by variation of the flow rate of the complementary gas or the current passed through the cell. It would be advisable to select that parameter which is nearest to the middle of its range.

3.5.3 Calculation of gas mixture content

The volume fraction of the calibration component, φ_A , in the calibration gas mixture is calculated from the relation:

$$\varphi_{\mathsf{A}} = \frac{q_{\mathsf{A}}}{q_{\mathsf{A}} + q_{\mathsf{B}}} \tag{2}$$

in which q_A and q_B are the volume flow rates of the calibration component and the complementary gas, respectively.

The contribution of the calibration component may be neglected in consideration with the flow of the complementary gas, in which case Equation (2) will become:

$$\varphi_{\mathsf{A}} = \frac{q_{\mathsf{A}}}{q_{\mathsf{B}}} \tag{3}$$

 q_A is calculated from Equation (4) and q_B is the complementary gas flow rate in millilitres per second (ml/s).

$$q_{\mathsf{A}} = \left(\frac{I \cdot K \cdot V_{\mathsf{m}}}{z \cdot F}\right) \cdot \left(\frac{T_{\mathsf{1}}}{T_{\mathsf{R}}}\right)$$
(4)

where

iTeh STANDARD PREVIEW

- q_A is the calibration gas volume flow rate in millilitres per second (ml/s); (standards.iteh.ai)
- *I* is electrical current in amperes (A);
- *V*_m is the molar volume of gas generated by the charge numerically equal to the Faraday number in litres per mole (I/mol); 1f22a012d128/iso-6145-11-2005
- *F* is the Faraday constant (see 3.1; 96 485,341 5 C/mol);
- z is the number of electron charges carried by one ion;
- T_1 is the temperature of the cell, usually ambient;
- $T_{\rm R}$ is the reference temperature, usually 273,15 K.
- *K* is dimensionless factor determined by cell efficiency and electrolysis reaction (see Table 1), usually delivered by the manufacturer or determined by experiment.

Equation (4) is based on the following:

$$n = \frac{Q}{z \cdot F} = \frac{I \cdot t}{z \cdot F} \tag{4a}$$

where

- *n* is the amount of substance in moles (mol);
- Q is the electric charge in coulombs (C);
- *t* is the time in seconds (s).

$$I \cdot t = Q = n \cdot z \cdot F = \frac{V}{V_{\mathsf{m}}} \cdot z \cdot F$$

(4b)

where

- *V* is the volume of generated gas in litres (I);
- $V_{\rm m}$ is the molar volume of gas generated by the charge numerically equal to the Faraday number in litres per mole (l/mol).

$$q \approx \frac{V}{t} = I \cdot V_{\mathsf{m}} \cdot \frac{1}{z \cdot F}$$
(4c)

Including a dimensionless factor K [determined by cell efficiency and electrolysis reaction (see Table 1; usually delivered by the manufacturer or determined by experiments)] and a temperature correction factor results in Equation (4).

EXAMPLE

In the production of a bromine mixture in nitrogen gas, the following data were obtained.

- 1) Electrolyte was 1 mol/l zinc bromide solution in water with platinum electrodes.
- 2) Decomposition potential, V_d, was 1,81 V. (See NOTE 1 below.)
- 3) Electrical current, *I*, passed through cell, was 0,1 mA.
- 4) Ambient temperature / cell temperature was set at 20 °C, reference temperature, T_R , was 0 °C.

Calculation of the volume flow rate of the calibration component, q_A (cell electrolysis): Bromine is diatomic, therefore z = 2. The cell efficiency factor, K, is 0,998. With Equation (4), q_A is given by:

$$q_{A} = \left(\frac{0.1 \text{ mA} \times 22.4 \text{ l/mol} \times 0.998}{2 \times 96 \text{ 485,34 As/mol}}\right) \times \left(\frac{293,15 \text{ K}}{273,15 \text{ K}}\right) + \left(\frac{145-112005}{273,15 \text{ K}}\right) + \left(\frac{145-112005}{273,15 \text{ K}}\right) + \left(\frac{145-112005}{273,15 \text{ K}}\right) + \left(\frac{123,15 \text{ K}}{273,15 \text{$$

The complementary gas flow rate, q_B , measured by a thermal mass-flow controller is 5 l/h = 5 000 ml/3 600 s = 1,39 ml/s.

Using Equation (3), the volume fraction, φ_A , of calibration gas in the mixture is given by:

$$\varphi_{\rm A} = \frac{q_{\rm A}}{q_{\rm B}} = \frac{12,5 \times 10^{-6} \,{\rm ml/s}}{1,39 \,{\rm ml/s}} = 8,99 \times 10^{-6}$$

NOTE 1 Strictly speaking, the voltage across the cell, measured by the voltmeter V_d , is greater than the decomposition potential by the quantity *I*·*R*, where *I* is the current flowing in amperes and *R* is the resistance in ohms. However, since *I* is very small and *R* is not very large, the quantity *I*·*R* may be neglected, and the voltage measured on V_d , although marginally larger by 0,1 %, taken as the decomposition potential.

NOTE 2 Verification of the final calibration gas mixture may be carried out by reference to a standard mixture prepared by a national body, using the comparison method given in ISO 6143. This procedure also identifies bias from other sources and establishes traceability against standard mixtures.

NOTE 3 Verification of the calibration mixture may be carried out by some analytical procedure. For example, a determined volume of the gas mixture may be absorbed in a suitable solution and the bromine content determined by volumetric titration. If the results of this procedure are used to assign volume fraction or mass concentration values to the calibration gas mixture, then the uncertainty of the analysis should be included as part of the overall uncertainty assessment.