TECHNICAL SPECIFICATION

ISO/TS 16281

First edition 2008-06-15

Rolling bearings — Methods for calculating the modified reference rating life for universally loaded bearings

Roulements — Méthodes de calcul de la durée nominale de référence corrigée pour les roulements chargés universellement

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 16281:2008 https://standards.iteh.ai/catalog/standards/sist/a689b78f-a191-4138-92f4-69c37e41986d/iso-ts-16281-2008

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 16281:2008 https://standards.iteh.ai/catalog/standards/sist/a689b78f-a191-4138-92f4-69c37e41986d/iso-ts-16281-2008

COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page

Forewo	ord	. iv
Introductionv		
1	Scope	1
2	Normative references	1
3	Symbols	2
4 4.1 4.2 4.3	Ball bearings General Bearing internal load distribution Rating life	4 4
5 5.1 5.2 5.3	Roller bearings	9 .10
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Reference geometries General Cylindrical roller bearings and needle roller bearings Deep groove ball bearings, angular contact ball bearings and separable ball bearings Spherical roller bearings Tapered roller bearings Self-aligning ball bearings Thrust cylindrical roller bearings and thrust needle roller bearings Thrust ball bearings and thrust angular contact ball bearings Thrust spherical roller bearings Thrust tapered roller bearings	.17 .17 .17 .17 .18 .18 .18
7 7.1 7.2 7.3	Life modification factor, $a_{\rm ISO}$, and contamination factor, $e_{\rm C}$.18 .18
8	Fatigue load limit and basic dynamic load rating	.19
Bibliog	graphy	.20

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a technical committee may decide to publish other types of document:

- an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in an ISO working group and is accepted for publication if it is approved by more than 50 % of the members of the parent committee casting a vote; TANDARD PREVIEW
- an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TS 16281 was prepared by Technical Committee ISO/TC 4, Rolling bearings, Subcommittee SC 8, Load ratings and life.

Introduction

Since publication of ISO 281 in 1990, additional knowledge has been gained regarding the influence on bearing life of contamination, lubrication, internal stresses from mounting, stresses from hardening, fatigue load limit of the material etc. It is therefore now possible to consider factors that have influence on bearing life in a more complete way in the life calculation.

ISO 281:2007 provides a method to put into practice this new knowledge in a consistent way when the modified rating life of a bearing is calculated. However, the calculation method given in ISO 281:2007 cannot consider the influence on life of tilted or misaligned bearings and the influence on life of bearing clearance during operation. This Technical Specification describes an advanced calculation method, which also makes it possible to consider these influences, and by that in addition provide the most accurate support for estimating the influence of contamination and other factors.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 16281:2008 https://standards.iteh.ai/catalog/standards/sist/a689b78f-a191-4138-92f4-69c37e41986d/iso-ts-16281-2008

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 16281:2008</u>

https://standards.iteh.ai/catalog/standards/sist/a689b78f-a191-4138-92f4-69c37e41986d/iso-ts-16281-2008

Rolling bearings — Methods for calculating the modified reference rating life for universally loaded bearings

1 Scope

This Technical Specification contains recommendations for the calculation of the modified reference rating life taking into consideration lubrication, contamination and fatigue load limit of the bearing material, as well as tilting or misalignment, operating clearance of the bearing and internal load distribution on rolling elements. The calculation method provided in this Technical Specification covers influencing parameters additional to those described in ISO 281.

The directions and limitations given in ISO 281 apply to this Technical Specification. The calculation methods pertain to the fatigue life of the bearings. Other mechanisms of failure, like wear or microspalling (gray staining), lie outside the scope of this Technical Specification.

This Technical Specification applies to tilted single-row radial ball bearings, subjected to radial and axial load and with radial clearance and tilt taken into account. It also applies to tilted single-row roller bearings, subjected to pure radial load and with radial clearance, edge stress and tilt taken into account. References to methods for the analysis of the internal load distribution under general load are given.

The analysis of internal load distribution and modified reference rating life for multi-row bearings or bearings of a more complex geometry can be derived from the equations given in this Technical Specification. For these bearings, the load distribution for each individual row has to be considered.

https://standards.iteh.ai/catalog/standards/sist/a689b78f-a191-4138-92f4-

This Technical Specification is primarily-intended to los used for computer programs and together with ISO 281 covers the information needed for life calculations. For accurate life calculations under the operating conditions specified above, it is recommended that either this Technical Specification or advanced computer calculations provided by bearing manufacturers, for determining the dynamic equivalent reference load under different loading conditions, be used.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 281:2007, Rolling bearings — Dynamic load ratings and rating life

ISO 15241, Rolling bearings — Symbols for quantities

Symbols 3

For the purpose of this document, the symbols given in ISO 15241 and the following apply. See also the terms and definitions in ISO 281:2007, Clause 3 and other definitions in ISO 281.

- distance, in millimetres, between raceway groove curvature centres of ball bearing having no Aclearance and having an initial contact angle
- life modification factor, based on a systems approach of life calculation $a_{\rm ISO}$
- life modification factor for reliability a_1
- basic dynamic axial load rating, in newtons C_{a}
- C_{r} basic dynamic radial load rating, in newtons
- fatigue load limit, in newtons C_{II}
- spring constant, in newtons per millimetre to the power of 10/9, of a rolling element with line contact c_{I}
- spring constant, in newtons per millimetre to the power of 3/2, of a rolling element with point contact c_{P}
- spring constant, in newtons per millimetre to the power of 8/9, of a roller lamina c_{s}
- pitch diameter, in millimetres, of ball or roller set D_{nw}
- nominal ball diameter, in millimetres TANDARD PREVIEW D_{w}
- roller diameter, in millimetres, applicable in the calculation of load ratings D_{we}
- Emodulus of elasticity, in megapascals 1)

ISO/TS 16281:2008

- $E(\chi)$
 - subscript for outer ring or housing washer
- е
- contamination factor e_{C}
- $F(\rho)$ relative curvature difference
- bearing axial load (axial component of actual bearing load), in newtons $F_{\mathbf{a}}$
- F_{r} bearing radial load (radial component of actual bearing load), in newtons
- stress correction function for consideration of edge load f[j,k]
- i subscript for inner ring or shaft washer
- number of rows of rolling elements
- $K(\chi)$ complete elliptic integral of the first kind
- modified reference rating life, in million revolutions L_{nmr}
- effective roller length, in millimetres, applicable in the calculation of load ratings L_{we}
- basic reference rating life, in million revolutions L_{10r}
- M_{z} moment, in newton millimetres, acting on tilted bearing

2

¹⁾ $1 \text{ MPa} = 1 \text{ N/mm}^2$

n_{S}	number of laminae
$P_{ref,a}$	dynamic equivalent reference axial load, in newtons
$P_{ref,r}$	dynamic equivalent reference radial load, in newtons
P(x)	profile function, in millimetres
p_{He}	contact stress, in megapascals, at the contact of outer ring and rolling element
p_{Hi}	contact stress, in megapascals, at the contact of inner ring and rolling element
$P_{k\mathbf{S}}$	dynamic equivalent load, in newtons, of a bearing lamina \boldsymbol{k}
Q	rolling element load, in newtons
Q_{ce}	rolling element load, in newtons, for the basic dynamic load rating of outer ring or housing washer
Q_{ci}	rolling element load, in newtons, for the basic dynamic load rating of inner ring or shaft washer
Q_{ee}	dynamic equivalent rolling element load, in newtons, on outer ring or housing washer
Q_{ei}	dynamic equivalent rolling element load, in newtons, on inner ring or shaft washer
Q_j	rolling element load, in newtons, of rolling element j
q_{ce}	basic dynamic load rating, in newtons, of a bearing lamina at the outer ring or housing washer contact
q_{ci}	basic dynamic load rating, in newtons, of a bearing lamina at the inner ring or shaft washer contact
q_{ee}	dynamic equivalent load, in newtons, of a bearing lamina at the outer ring or housing washer contact
q_{ei}	dynamic equivalent load, in newtons of a bearing amina at the inner ring or shaft washer contact https://standards.iteh.ai/catalog/standards/sist/a689b78f-a191-4138-92f4-load, in newtons, on the lamina k of roller jso-ts-16281-2008
$q_{j,k}$ R_{i}	distance, in millimetres, between the centre of curvature of the inner race groove and the axis of rotation
R_{p}	crown radius, in millimetres, of spherical rollers
r_{e}	cross-sectional raceway groove radius, in millimetres, of outer ring or housing washer
r_{i}	cross-sectional raceway groove radius, in millimetres, of inner ring or shaft washer
s	radial operating clearance, in millimetres, of bearing
x_k	distance, in millimetres, between centre of lamina k and roller centre
Z	number of rolling elements
α	nominal contact angle, in degrees, of a bearing
α_{i}	operating contact angle, in degrees, of the rolling element <i>j</i>
α_0	initial contact angle, in degrees
γ	auxiliary parameter, $\gamma = D_{\rm w} \cos \alpha I D_{\rm pw}$
δ	total elastic deflection, in millimetres, of both contacts of a rolling element
δ_{i}	elastic deflection, in millimetres, of the rolling element <i>j</i>
$\delta_{j,k}$	elastic deflection, in millimetres, of the lamina k of the roller j
J, κ	·

© ISO 2008 – All rights reserved

ISO/TS 16281:2008(E)

- $\delta_{\rm a}$ relative axial displacement, in millimetres, of both bearing rings
- $\delta_{\rm r}$ relative radial displacement, in millimetres, of both bearing rings
- λ reduction factor for the consideration of stress concentrations
- ν adjustment factor for exponent variation
- v_{E} Poisson's ratio
- ρ curvature, in reciprocal millimetres, of the contact surface
- $\Sigma \rho$ curvature sum, in reciprocal millimetres
- φ_i angular position, in degrees, of rolling element j
- χ ratio of semi-major to semi-minor axis of the contact ellipse
- w total misalignment, in degrees, between inner raceway and outer raceway
- ψ_j total misalignment, in degrees, between inner raceway and outer raceway in the plane of rolling element j

4 Ball bearings

4.1 General iTeh STANDARD PREVIEW

This clause describes the analysis of the internal load distribution for radial ball bearings and thrust ball bearings under radial and axial load, taking into account radial clearance and tilt. Calculation methods concerning the analysis of bearings of different geometry or for more complex load cases can be derived from the equations given in this Technical Specification alog/standards/sist/a689b78f-a191-4138-92f4-

69c37e41986d/iso-ts-16281-2008

The bearing internal load distribution is calculated for a static equilibrium; dynamic effects like centripetal and gyroscopic forces are considered insignificant. This assumption is generally valid for low and moderate speeds. At high speeds, centripetal and gyroscopic forces can become predominant and significantly alter the bearing internal load distribution.

4.2 Bearing internal load distribution

4.2.1 Elastic deflection of point contact

The elastic deflection of a point contact can be calculated from Hertzian theory. The elastic deflection of a single point contact, δ , is given by

$$\delta = \sqrt[3]{4.5 \left(\frac{1 - v_{\text{E}}^2}{\pi E}\right)^2} K(\chi) \sqrt[3]{\frac{\sum \rho}{\chi^2 E(\chi)}} Q^{2/3}$$
 (1)

The ratio, χ , of the semi-major to semi-minor ellipses is the root of Equation (2)

$$1 - \frac{2}{\chi^2 - 1} \left[\frac{K(\chi)}{E(\chi)} - 1 \right] - F(\rho) = 0$$
 (2)

with the complete elliptic integral of the first kind, $K(\gamma)$

$$K(\chi) = \int_{0}^{\pi/2} \left[1 - \left(1 - \frac{1}{\chi^2} \right) (\sin \varphi)^2 \right]^{-1/2} d\varphi$$
 (3)

and the complete elliptic integral of the second kind, $E(\chi)$

$$E(\chi) = \int_{0}^{\pi/2} \left[1 - \left(1 - \frac{1}{\chi^2} \right) (\sin \varphi)^2 \right]^{1/2} d\varphi$$
 (4)

the curvature sum at the inner ring contact, $\Sigma \rho_i$

$$\sum \rho_{i} = \frac{2}{D_{w}} \left(2 + \frac{\gamma}{1 - \gamma} - \frac{D_{w}}{2r_{i}} \right)$$
 (5)

and curvature sum at the outer ring contact, $\Sigma \rho_{\rm e}$

$$\sum \rho_{\mathbf{e}} = \frac{2}{D_{\mathbf{w}}} \left(2 - \frac{\gamma}{1 + \gamma} - \frac{D_{\mathbf{w}}}{2r_{\mathbf{e}}} \right) \tag{6}$$

and the relative curvature difference at the inner ring contact, $F_i(\rho)$

$$F_{i}(\rho) = \left(\frac{\gamma}{1-\gamma} + \frac{D_{w}}{2r_{i}}\right) / \left(2 + \frac{\gamma}{1-\gamma} - \frac{D_{w}}{2r_{i}}\right)$$
 (7)

and the relative curvature difference at the outer ring contact, $F_{\rm e}(\rho)$

$$F_{e}(\rho) = \left(\frac{-\gamma}{1+\gamma} + \frac{D_{w}}{2r_{e}}\right) / \left(\frac{\gamma}{1+\gamma} - \frac{D_{w}}{2r_{e}}\right) / \left($$

The total elastic deflection of both contacts at inner ring and outer ring, δ , is given by

$$\delta = \sqrt[3]{4,5 \left(\frac{1 - \nu_{\rm E}^2}{\pi E}\right)^2} \left[K(\chi_{\rm i}) \sqrt[3]{\frac{69 \sum_{i} \rho_{\rm i}^{\rm e} 41986 \text{d/iso-ts-} 1}{\chi_{\rm i}^2 E(\chi_{\rm i})}} + K(\chi_{\rm e}) \sqrt[3]{\frac{1028 \sum_{i} \rho_{\rm e}^2}{\chi_{\rm e}^2 E(\chi_{\rm e})}} \right] Q^{2/3}$$
(9)

This leads to Equation (10) for load-deflection

$$Q = c_{\mathsf{P}} \ \delta^{3/2} \tag{10}$$

with the spring constant, c_{P}

$$c_{P} = 1{,}48 \frac{E}{1 - v_{E}^{2}} \left[K(\chi_{i}) \sqrt[3]{\frac{\sum \rho_{i}}{\chi_{i}^{2} E(\chi_{i})}} + K(\chi_{e}) \sqrt[3]{\frac{\sum \rho_{e}}{\chi_{e}^{2} E(\chi_{e})}} \right]^{-3/2}$$
(11)

4.2.2 Static equilibrium

For a radial ball bearing with diametrically measured radial operating clearance, s, having an initial contact angle, α_0 = arccos [1 – (s/2A)], the total elastic deflection of the rolling element, δ_i , is given by

$$\delta_{j} = \left\langle \sqrt{\left(A\cos\alpha_{0} + \delta_{r}\cos\varphi_{j}\right)^{2} + \left(A\sin\alpha_{0} + \delta_{a} + R_{i}\sin\psi\cos\varphi_{j}\right)^{2}} - A\right\rangle$$
(12)

The right-hand side of Equation (12) is set to zero if it is negative.

NOTE The initial contact angle, α_0 , is generally not identical to the nominal contact angle, α , in ISO 281.