INTERNATIONAL STANDARD

Plastics piping systems for the supply of gaseous fuels for maximum operating pressure up to and including $0,4 \mathrm{MPa}$ (4 bar) - Polyamide (PA) -

 Part 2:
Pipes

iTeh STANIDARD PREVIEW
(Systèmes de canalisations en matières plastiques pour la distribution de combustibles gazeux pour une pression maximale de service inférieure ou égale à 0,4 MPa (4 bar) — Polyamide (PA) -

Partie 2. Tuyauteries
hittps://standards.iteh.aicatalog stanyards/sist/17c58fca-eb6b-4347-acdb-
9576ffc841f6/iso-15439-2-2007

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15439-2:2007
https://standards.iteh.ai/catalog/standards/sist/17c58fca-eb6b-4347-acdb-9576ffc841f6/iso-15439-2-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15439-2 was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 4, Plastics pipes and fittings for the supply of gaseous fuels.

ISO 15439 consists of the following parts, under the general title Plastics piping systems for the supply of gaseous fuels for maximum operatíng pressure up to and including 0, 4 MPa (4 bar) — Polyamide (PA):

- Part 1: General

ISO 15439-2:2007

- Part 2: Pipes
https://standards.iteh.ai/catalog/standards/sist/17c58fca-eb6b-4347-acdb-9576ffe841f6/iso-15439-2-2007
- Part 3: Fittings

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15439-2:2007
https://standards.iteh.ai/catalog/standards/sist/17c58fca-eb6b-4347-acdb-9576ffc841f6/iso-15439-2-2007

Plastics piping systems for the supply of gaseous fuels for maximum operating pressure up to and including $0,4 \mathrm{MPa}$ (4 bar) - Polyamide (PA) -

Part 2:
 Pipes

1 Scope

This part of ISO 15439 specifies the physical and mechanical properties of pipes made from polyamide in accordance with Part 1, intended to be buried and used for the supply of gaseous fuels for maximum operating pressure up to and including 4 bar.

It also specifies the test parameters for the test methods to which it refers.
In addition, this part of ISO 15439 lays down dimensional characteristics and requirements for the marking of pipes.
(standardls.iteh.aii)

2 Normative references ISO 15439-2:2007

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 161-1, Thermoplastics pipes for the conveyance of fluids - Nominal outside diameters and nominal pressures - Part 1: Metric series

ISO 291, Plastics - Standard atmospheres for conditioning and testing
ISO 307, Plastics - Polyamides - Determination of viscosity number
ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids - Determination of the resistance to internal pressure - Part 1: General method

ISO 1167-2, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids - Determination of the resistance to internal pressure - Part 2: Preparation of pipe test pieces

ISO 2505, Thermoplastics pipes - Longitudinal reversion - Test method and parameters
ISO 3126, Plastics piping systems - Plastics components - Determination of dimensions
ISO 3127, Thermoplastics pipes - Determination of resistance to external blows - Round-the-clock method
ISO 4065, Thermoplastics pipes - Universal wall thickness table
ISO 6259-1, Thermoplastics pipes - Determination of tensile properties - Part 1: General test method

ISO 6259-3, Thermoplastics pipes - Determination of tensile properties — Part 3: Polyolefin pipes
ISO 11922-1:1997, Thermoplastics pipes for the conveyance of fluids - Dimensions and tolerances - Part 1: Metric series

ISO 13477, Thermoplastics pipes for the conveyance of fluids - Determination of resistance to rapid crack propagation (RCP) - Small-scale steady-state test (S4 test)

ISO 13479, Polyolefin pipes for the conveyance of fluids - Determination of resistance to crack propagation - Test method for slow crack growth on notched pipes (notch test)

ISO 13480, Polyethylene pipes - Resistance to slow crack growth - Cone test method
ISO 15439-1:2007, Plastics piping systems for the supply of gaseous fuels for maximum operating pressure up to and including 0,4 MPa (4 bar) - Polyamide (PA) - Part 1: General

3 Terms and definitions, symbols and abbreviated terms

For the purposes of this document, the terms and definitions, symbols and abbreviated terms given in ISO 15439-1 apply.

4 Compound

The pipes shall be made from virgin material. Rework material shall not be used.
The compound from which the pipes are made shall conform to ISO 15439-1.
ISO 15439-2:2007
5 Appearance
https://standards.iteh.ai/catalog/standards/sist/17c58fca-eb6b-4347-acdb-9576ffc841f6/iso-15439-2-2007

When viewed without magnification, the internal and external surfaces of pipes shall be smooth, clean and free from scoring, cavities and other surface defects which may affect pipe performance. The pipe ends shall be cut cleanly and square to the axis of the pipe.

6 Geometrical characteristics

6.1 Measurement of dimensions

Dimensions shall be measured in accordance with ISO 3126 at $(23 \pm 2)^{\circ} \mathrm{C}$, after being conditioned for at least 4 h . The measurement shall not be made less than 24 h after manufacture.

6.2 Mean outside diameters, out-of-roundness and their tolerances

The mean outside diameters of the pipe d_{em} and their tolerances shall conform to Table 1.
For maximum mean outside diameter, grade B tolerances, conforming to ISO 11922-1, shall apply.
The maximum absolute out-of-roundness is not applicable for this part of ISO 15439 because the socket rerounds the pipe spigot when solvent cement jointed.

Table 1 - Mean outside diameters
Dimensions in millimetres

Nominal outside diameterd_{n}	Mean outside diameter	
	$d_{\text {em, min }}$	$d_{\text {em,max }}$
12	12,0	12,2
16	16,0	16,3
18	18,0	18,2
20	20,0	20,3
23	23,0	23,2
25	25,0	25,3
32	32,0	32,3
40	40,0	40,4
50	50,0	50,4
63	63,0	63,4
75	75,0	75,5
90	90,0	90,6
iTelh $\underset{110}{\text { STAND }}$	$\operatorname{ARD}_{110,0} \mathrm{PR}^{2}$	$\text { VIE } W_{110,7}$
125Standa	CdS.125,0.21)	125,8
140	140,0	140,9
https:/standard ${ }^{160}$.teh.ai/catalog/sta	$\frac{139-2: 2007}{160} 0$ ndards/s58fa-e	b6b-4347-16dio
$180{ }^{\text {9576ffc841ff }}$	$\begin{array}{\|c} \text { iso-15439-2-2007 } \\ 180,0 \end{array}$	181,1
200	200,0	201,2
225	225,0	226,4
250	250,0	251,5

6.3 Wall thicknesses and tolerances

6.3.1 Minimum wall thickness

The minimum wall thickness $e_{\min }$ shall conform to Table 2 . Small diameter pipes are characterized by wall thickness. Large diameter pipes are characterized by SDR.

The use of any SDR derived from the pipe series S given in accordance with ISO 4065 and ISO 161-1 is permitted.

NOTE To minimize the possibility of damage to small diameter gas pipes by external influences, the use of pipes with a wall thickness not less than $1,0 \mathrm{~mm}$ - even if this is a higher value than according to the minimal SDR value - can be considered.

Table 2 - Minimum wall thickness
Dimensions in millimetres

Nominal outside diameterd_{n}	Minimum wall thickness$e_{\text {min }}$	
	SDR 26	SDR 33
12	1,0	1,0
16	1,0	1,0
18	1,0	1,0
20	1,0	1,0
23	1,0	1,0
25	1,0	1,0
32	1,3	1,0
40	1,6	1,3
50	1,9	1,6
63	2,5	2,0
75	2,9	2,3
90	3,5	2,8
110	4,3	3,4
125	4,9	3,8
$\begin{gathered} 140 \\ 140 \\ 160 \\ S T A \end{gathered}$	$\operatorname{VD} A_{6,2}^{5,4} D \mathrm{P}$	$R E V_{4,9}^{4,2} \mathbf{W}$
180 (Star	darai,0.itel	- ai) 5,5
200 (Nat		6,1
225	ISO 15439-2:2007	6,9
https://250 lards.iteh.ai/cat	Hog/stand 9;7s/sist 17 cs	8fca-eb677,6347-acdb

9576ffe841 f6/iso-15439-2-2007

6.3.2 Tolerances on the wall thickness at any point

The tolerances on the wall thickness at any point shall conform to Grade V of ISO 11922-1:1997. The maximum permissible variation between the nominal wall thickness e_{n} and the wall thickness at any point e shall conform to Table 3.

Table 3 - Tolerances on wall thickness at any point
Dimensions in millimetres

Minimum wall thickness $e_{\text {min }}$		Permitted positive deviation
$>$	\leqslant	0,2
1,0	1,5	0,3
1,5	2,5	0,4
2,5	3,5	0,5
3,5	4,4	0,6
4,4	5,0	0,7
5,0	6,4	0,8
6,4	7,5	0,9
7,5	8,0	1,0
8,0	9,0	1,1
9,0	10,0	1,2
10,0	11,0	

Table 4 - Mechanical characteristics

Characteristic	Requirements	Test parameters		Test method
Hydrostatic strength ($20^{\circ} \mathrm{C}, 1000 \mathrm{~h}$)	No failure during the test period of any test piece	End caps Orientation Conditioning time Type of test Circumferential (hoop) stress: PA 11160 and PA 12160 PA 11180 and PA 12180 Test period Test temperature	Type a) Free 6 h Water-in-water $19,0 \mathrm{MPa}$ $20,0 \mathrm{MPa}$ 1000 h $20^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ISO 1167-1 } \\ & \text { ISO 1167-2 } \end{aligned}$
Hydrostatic strength ($80^{\circ} \mathrm{C}, 165 \mathrm{~h}$)	No failure during the test period of any test piece	End caps Orientation Conditioning time Type of test Circumferential (hoop) stress: PA 11160 and PA 12160 PA 11180 and PA 12180 Test period Test temperature	Type a) Free 6 h Water-in-water $10,0 \mathrm{MPa}$ $11,5 \mathrm{MPa}$ 165 h $80^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ISO 1167-1 } \\ & \text { ISO 1167-2 } \end{aligned}$
Elongation at break	$\geqslant 200$ \%	Test speed	$25 \mathrm{~mm} / \mathrm{min}$	$\begin{aligned} & \text { ISO 6259-1 } \\ & \text { ISO 6259-3 } \end{aligned}$
Resistance to external blows (Round-the-clock method)	No fracture in any test piece iTeh ST	Conditioning time Number of test pieces Type of test Testtemperature PREV Type of striker Striker mass and drop heighot \qquad	4 h 6 Air- $(-20 \pm 2)^{\circ} \mathrm{C}$ d25 as specified in Table 5	ISO 3127
Resistance to slow crack growth for $e \leqslant 5 \mathrm{~mm}$ (Cone test)	$1 \mathrm{Y} \leqslant \mathrm{~s}=10 \mathrm{~mm} / \mathrm{day}$	catalog/standards/sist/17c58fca-eb6 6ffce841f6/iso-15439-2-2007	b-4347-acdb-	ISO 13480
Resistance to slow crack growth for $e>5 \mathrm{~mm}$ (Notch test)	No failure during the test period of any test piece	Test temperature Test pressure (see NOTE): - SDR PA 11160 and PA 12160 PA 11180 and PA 12180 Test period Type of test	$80^{\circ} \mathrm{C}$ 26 $7,2 \mathrm{bar}$ 53 $8,0 \mathrm{bar}$ $6,2 \mathrm{bar}$ 500 h Water-in-water	ISO 13479
Resistance to rapid crack propagation (Critical pressure, $\left.p_{\mathrm{c}}\right)^{\mathrm{a}}$	$\begin{aligned} & p_{\mathrm{c}} \geqslant 1.5 \mathrm{MOP} \\ & \text { with } \\ & p_{\mathrm{c}}=7,8 p_{\mathrm{c}, 54^{+}} 6,8^{\mathrm{b}} \end{aligned}$	Test temperature	$0^{\circ} \mathrm{C}$	ISO 13477

a Testing is only required when the wall thickness of the pipe is greater than the wall thickness of the pipe used in the RCP test to qualify the compound (see Table 2 of ISO 15439-1:2007). For severe conditions (e.g. sub-zero temperatures) RCP testing is also recommended to establish the critical pressure of the working temperature.
b Alternatively the full-scale test method according to Annex C of ISO 15439-1:2007 may be used. The relation between the fullscale test and the S 4 test is defined by the formula $p_{\mathrm{C}, \mathrm{FS}}+p_{\mathrm{atm}}=7,8\left(p_{\mathrm{C}, \mathrm{S} 4}+p_{\mathrm{atm}}\right)$. In this case: $p_{\mathrm{C}}=p_{\mathrm{C}, \mathrm{FS}}$. In case of dispute, the fullscale test is decisive.

NOTE These pressure levels are calculated to give nominal pipe hydrostatic levels of either 9 MPa in PA 11160 and PA12 160 materials or 10 MPa in PA 11180 and PA 12180 materials by using the following equation:

$$
p=\frac{20 \sigma}{\operatorname{SDR}-1}
$$

where
σ is the hydrostatic stress, in megapascals;
SDR is the standard dimension ratio.

