INTERNATIONAL STANDARD

First edition 2007-01-15

Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) —

Part 5: Fitness for purpose of the system

iTeh Standard PREVIEW Systèmes de canalisations en plastique pour les installations d'eau (stehaude et froide — Polyéthylène de meilleure résistance à la température (PE-RT) —

Partie 5: Aptitude à l'emploi du système

https://standards.iteh.ai/catalog/standards/sist/b750bc89-2158-4478-b18e-5405712591ae/iso-22391-5-2007

Reference number ISO 22391-5:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22391-5:2007</u> https://standards.iteh.ai/catalog/standards/sist/b750bc89-2158-4478-b18e-5405712591ae/iso-22391-5-2007

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 22391-5 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 2, *Plastics pipes and fittings for water supplies*.

ISO 22391 consists of the following parts, under the general title *Plastics piping systems for hot and cold* water installations — Polyethylene of raised temperature resistance (*PE-RT*):

- Part 1: General
- ISO 22391-5:2007

 Part 2: Pipes
 https://standards.iteh.ai/catalog/standards/sist/b750bc89-2158-4478-b18e-5405712591ae/iso-22391-5-2007
- Part 3: Fittings
- Part 5: Fitness for purpose of the system

Introduction

ISO 22391, the system standard, specifies the requirements for a piping system and its components when made from polyethylene of raised temperature resistance (PE-RT). The piping system is intended to be used for hot and cold water installations.

In respect of potential adverse effects on the quality of water intended for human consumption caused by the products covered by ISO 22391:

- a) no information is provided as to whether the products may be used without restriction;
- b) existing national regulations concerning the use and/or characteristics of the products remain in force.

This part of ISO 22391 specifies the characteristics of fitness for purpose of the system. At the time of its publication, system standards for piping systems of other plastics materials used for the same application are

- ISO 15874:2003, Plastics piping systems for hot and cold water installations Polypropylene (PP),
- ISO 15875:2003, Plastics piping systems for hot and cold water installations Crosslinked polyethylene (PE-X),
- ISO 15876:2003, Plastics piping systems for hot and cold water installations Polybutylene (PB), and (standards.iteh.ai)
- ISO 15877:2003, Plastics piping systems for hot and cold water installations Chlorinated poly(vinyl chloride) (PVC-C).
 ISO 22391-5:2007

https://standards.iteh.ai/catalog/standards/sist/b750bc89-2158-4478-b18e-5405712591ae/iso-22391-5-2007

Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) —

Part 5: Fitness for purpose of the system

1 Scope

This part of ISO 22391 specifies the characteristics of the fitness for purpose of piping systems made from polyethylene of raised temperature resistance (PE-RT), intended to be used for hot and cold water installations within buildings for the conveyance of water — whether or not the water is intended for human consumption (domestic systems) or heating systems — under the design pressures and temperatures appropriate to the class of application according to ISO 22391-1.

It covers a range of service conditions (classes of application), design pressures and pipe dimension classes, and also specifies test parameters and test methods. When used in conjunction with the other parts of ISO 22391, it is respectively applicable to PE-RT pipes, fittings, their joints, and to joints having components of PE-RT as well as of other plastics and non-plastics materials used for hot and cold water installations.

It is not applicable for values of design temperature, maximum design temperature or malfunction temperature in excess of those specified in ISO 22391-1.0022391-2.2007.

NOTE It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and any relevant national regulations and installation practices or codes.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1167-1:2006, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 1167-2:2006, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 2: Preparation of pipe test pieces

ISO 22391-1, Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) — Part 1: General

ISO 22391-2, Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) — Part 2: Pipes

EN 712, Thermoplastics piping systems — End-load bearing mechanical joints between pressure pipes and fittings — Test method for resistance to pull-out under constant longitudinal force

EN 713, Plastics piping systems — Mechanical joints between fittings and polyolefin pressure pipes — Test method for leaktightness under internal pressure of assemblies subjected to bending

EN 12293, Plastics piping systems — Thermoplastics pipes and fittings for hot and cold water — Test method for the resistance of mounted assemblies to temperature cycling

EN 12294, Plastics piping systems — Systems for hot and cold water — Test method for leaktightness under vacuum

EN 12295, Plastics piping systems — Thermoplastics pipes and associated fittings for hot and cold water — Test-method for resistance of joints to pressure cycling

3 Terms, definitions, symbols and abbreviated terms

For the purposes of this document, the terms, definitions, symbols and abbreviated terms given in ISO 22391-1 apply.

4 Fitness for purpose of joints and piping system

4.1 General

The joints and the piping system shall be tested in accordance with Table 1 and 4.2 to 4.7, as applicable. When tested, their characteristics shall be in accordance with the requirements of the corresponding subclauses.

For the tests given in Table 1, applicable for each of the different types of jointing system covered by this part of ISO 22391, the fittings shall be connected to the pipe with which they are intended to be used.

https://sta Jointing/system og/standarc Test/parameters 158-4478-b18e-						
https: Test	SW EF		1571259	andard est parameters 58-44 ad ad subclause of this part of ISO 22391 in which given)	Test method	
Internal pressure test	Yes	Yes	Yes	4.2	ISO 1167-1 and ISO 1167-2	
Bending test	N/A	N/A	Yes	4.3	EN 713	
Pull-out test	N/A	N/A	Yes	4.4	EN 712	
Thermal cycling test	Yes	Yes	Yes	4.5	EN 12293	
Pressure cycling test	N/A	N/A	Yes	4.6	EN 12295	
Leaktightness under vacuum test	N/A	N/A	Yes	4.7	EN 12294	
SW Socket fusion joint.			•			
EF Electrofusion joint.						
M Mechanical joint.						
Yes Test applicable.						
N/A Not applicable.						

Table 1 — Joint tests

4.2 Internal pressure test

When tested in accordance with ISO 1167-1 and ISO 1167-2, using the test parameters in accordance with Table 2 for the relevant classes, the joint assemblies shall not leak.

The test pressure, $p_{\rm J}$, for a given time to failure and test temperature shall be determined using Equation (1):

$$p_{\rm J} = p_{\rm D} \times \frac{\sigma_{\rm P}}{\sigma_{\rm DP}} \tag{1}$$

where

- is the hydrostatic test pressure, in bars, to be applied to the joint assembly during the test period; p_{J}
- is the hydrostatic stress value, in megapascals (MPa), for the pipe material corresponding to $\sigma_{\rm P}$ time-to-failure/test temperature points, as given in Table 2;
- is the design stress value, in megapascals (MPa), for the pipe material as determined for each class $\sigma_{\rm DP}$ and according to ISO 22391-2:2006, Table A.2;
- is the design pressure of 4 bar, 6 bar, 8 bar or 10 bar, as applicable. p_{D}
- NOTE 1 bar = 0,1 MPa = 10⁵ Pa; 1 MPa = 1 N/mm²

iTeh STANDARD PREVIEW Table 2 – Test parameters for internal pressure test (standard s.iteh.al)

	Application class					
<u>ISO 2239</u>	<u>1+5:2007</u> 1	2	4	5		
Maximum design temperature, T _{max} , 5405712591ae/iss	ds/sist/b750bc89-2 80 22391-5-2007	2158-4478-b18e 80	70	90		
Design stress of pipe material, $\sigma_{\rm DP}$, MPa	3,29	2,68	3,25	2,38		
Test temperature ^a , T _{test} , °C	95	95	80	95		
Test duration, t, h	1 000	1 000	1 000	1 000		
Hydrostatic stress of pipe material, $\sigma_{\!\mathrm{P}}$, MPa	3,4	3,4	4,5	3,4		
Test pressure , p_J , bars for a design pressure, p_D , of:						
4 bar	5,1 ^b	5,1 ^b	6,8 ^b	5,8		
6 bar	6,3	7,7	8,4	8,7		
8 bar	8,3	10,2	11,2	11,5		
10 bar	10,4	12,8	14,0	14,4		
Number of test pieces	3	3	3	3		

Generally the highest test temperature is taken to be $(T_{max} + 10)$ °C with an upper limit of 95 °C. However, in order to match existing test facilities, the highest test temperature for classes 1 and 2 is also set at 95 °C. The hydrostatic stresses given correspond to the given test.

The 20 °C, 10 bar, 50 years, cold water requirement, being higher, determines this value (see ISO 22391-1:2006, Clause 4).

In special circumstances, if joint tests according to this subclause cause leaks resulting from differentialelongation-induced deformations, a test pressure may be determined from the stress and creep data (relative to a design period of 50 years) for the different materials used.

4.3 Bending test

When tested in accordance with EN 713, to the applicable pressure for the 20 °C, 1 h condition, using the test parameters according to Table 3 and a bending radius equal to the minimum radius of bending for the pipes as recommended by the system supplier, the joint assembly shall not leak.

This test is only applicable to pipes of nominal diameter greater than or equal to 32 mm.

			Application class				
			1	2	4	5	
Maximum design temperature, $T_{max'}$ °C		80	80	70	90		
Design stress of pipe material, $\sigma_{\rm DP}$, MPa		3,29	2,68	3,25	2,38		
Test temperature, T _{test} , °C		20	20	20	20		
Test duration, t, h		1	1	1	1		
Hydrostatic stress of pipe material, $\sigma_{\rm P}$, MPa		9,9	9,9	9,9	9,9		
Test pressure , p_J , bars for a design pressure, p_D , of:							
	4 bar		14,8 ^a	14,8 ^a	14,8 ^a	16,6	
	^{6 bar} iTeh S	ΓΑΝ	DA ^{18,0} D		18,2	24,8	
	0 hor		24,0	29,4	24,3	33,1	
	10 bar	stand	lards, ite	$h.a_{36,8}$	30,3	41,4	
Number of test pieces		0 22391-5.2007	3	3	3		
^a Being higher, the 20 °C, 1	0 bart 50/years cold wa	ter/require	ment determines t	his value (see ISC	722391-1:2006, C	lause 4).	

Table 3 — Test parameters for bending test

5405712591ae/iso-22391-5-2007

4.4 Pull-out test

When tested in accordance with EN 712, using the test parameters according to Table 4, the joint assemblies shall withstand the pull-out force without being separated.

The force, *F*, expressed in newtons (N), shall be calculated using Equation (2):

$$F = \frac{\pi}{4} d_n^2 \times p_D \tag{2}$$

where

- d_n is the nominal outside diameter of the pipe, expressed in millimetres (mm);
- $p_{\rm D}$ is the design pressure of 4, 6, 8 or 10 bar, as applicable, expressed in megapascals (MPa).

For "All", in Table 4, the design pressure shall be 10 bar, expressed in megapascals (MPa).

NOTE 1 bar = 0,1 MPa = 10⁵ Pa; 1 MPa = 1 N/mm²

	Application class(es)					
	All	1	2	4	5	
Maximum design temperature, T _{max} , °C	_	80	80	70	90	
Test temperature, <i>T</i> _{test} , °C	23	90	90	80	95	
Test duration, <i>t</i> , h	1	1	1	1	1	
Pull-out force, N	1,5 × <i>F</i>	F	F	F	F	
Number of test pieces	3	3	3	3	3	

Table 4 — Test parameters for pull-out test

4.5 Thermal cycling test

When tested in accordance with EN 12293, using the test parameters according to Table 5, the pipes, fittings or joints, as applicable, shall withstand the test without leakage.

The test for flexible pipes shall only be used when the manufacturer declares that the pipe can be bent to the configuration shown. The bending radius shall not be smaller than the minimum declared bending radius. In all other cases, the test for rigid pipes shall apply.

Table 5 — Test parameters for thermal cycling test						
	Application class					
(star	ndards.ite	n.al) ₂	4	5		
Maximum design temperature, T _{max} , °C	80 80 22391-5:2007	80	70	90		
Highest test temperature./sGndards.iteh.ai/cata			b18e- 80	95		
Lowest test temperature, °C 54057	12591ae/is2022391-3	-2007 20	20	20		
Test pressure, bars	p_{D}	p_{D}	p_{D}	p_{D}		
Number of cycles ^a	5 000	5 000	5 000	5 000		
Number of test pieces	One set of fittings in accordance with the configuration of EN 12293.					
Number of cycles ^a Number of test pieces						

^a Each cycle shall comprise 15^{+1}_{0} min at the highest test temperature and 15^{+1}_{0} min at the lowest (i.e. the duration of one cycle is 300^{+2}_{0} min).

The tensile stress, σ_{t} , used to calculate the pre-stress force required by EN 12293 shall be 2,2 MPa.

The tensile stress, σ_{t} , expressed in megapascals (MPa), shall be calculated using Equation (3):

$$\sigma_{\mathsf{t}} = \alpha \times \Delta T \times E$$

(3)

where

- α is the coefficient of thermal expansion, expressed in reciprocal kelvin (1/K);
- ΔT is the temperature difference, expressed in kelvin (K);
- *E* is the modulus of elasticity, expressed in megapascals (MPa).

For the purposes of this part of ISO 22391: