

INTERNATIONAL
STANDARD

ISO
16454

First edition
2007-11-01

Space systems — Structural design — Stress analysis requirements

*Systèmes spatiaux — Conception des structures — Exigences relatives
à l'analyse des contraintes*

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 16454:2007](#)

<https://standards.iteh.ai/catalog/standards/iso/0d66892e-33b3-48a1-a8a4-e29b78778ff5/iso-16454-2007>

Reference number
ISO 16454:2007(E)

© ISO 2007

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 16454:2007](#)

<https://standards.iteh.ai/catalog/standards/iso/0d66892e-33b3-48a1-a8a4-e29b78778ff5/iso-16454-2007>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword.....	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions.....	1
4 Requirements	5
4.1 General.....	5
4.2 Basic data	5
4.3 Analysis methodology and software	7
4.4 Structural mathematical model	7
4.5 Structure mathematical model check.....	8
4.6 Failure modes.....	8
4.7 Critical location analysis.....	9
4.8 Determination margins of safety.....	9
4.9 Report	10
Annex A (informative) Structural mathematical model check	11

iTeh Standards
(https://standards.iteh.ai)
Document Preview

ISO 16454:2007

<https://standards.iteh.ai/catalog/standards/iso/0d66892e-33b3-48a1-a8a4-e29b78778ff5/iso-16454-2007>

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16454 was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 14, *Space systems and operations*.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 16454:2007](#)

<https://standards.iteh.ai/catalog/standards/iso/0d66892e-33b3-48a1-a8a4-e29b78778ff5/iso-16454-2007>

Introduction

From the beginning of the space age, structural integrity verification has been one of the main fields of mechanical specialists' activity. Mission failure and potential danger to human life, expensive ground constructions and other public and private property are the most probable consequences in the case of space structural integrity failure. Static strength is one of the most important critical conditions for structural integrity analysis. It is usually the main criteria for space structure weight evaluation. If the space structure is too heavy, the mission could be extremely expensive or impossible to achieve. If the space structure is underdesigned, it could result in structural failure, leading to high risk associated with safety of life, and loss of expensive hardware and other property. It is therefore necessary to specify unique requirements for static strength analysis in order to provide cost effective design and light-weight, reliable and low risk structures for space application.

The analysis and design of space structures has a long history. This International Standard establishes the preferred requirements related to these techniques for static strength critical condition.

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[ISO 16454:2007](#)

<https://standards.iteh.ai/catalog/standards/iso/0d66892e-33b3-48a1-a8a4-e29b78778ff5/iso-16454-2007>

Space systems — Structural design — Stress analysis requirements

1 Scope

This International Standard is intended to be used for the determination of the stress/strain distribution and margins of safety in launch vehicles and spacecraft primary structure design. Liquid propellant engine structures, solid propellant engine nozzles and the solid propellant itself are not covered, but liquid propellant tanks, pressure vessels and solid propellant cases are within the scope of this International Standard.

This International Standard provides requirements for the determination of maximum stress and corresponding margin of safety under loading, and defines criteria for static strength failure modes, such as rupture, collapse and detrimental yielding. Critical conditions associated with fatigue, creep and crack growths are not covered. Notwithstanding these limitations in scope, the results of stress calculations based on the requirements of this International Standard are applicable to other critical condition analyses.

In accordance with the requirements of this International Standard, models, methods and procedures for stress determination can also be applied to the displacements and deformation calculations, as well as to the loads definition, applied to substructures and structural members of structures under consideration. When this International Standard is applied, it is assumed that temperature distribution has been determined and is used as input data.

Document Preview

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14622, *Space systems — Structural design — Loads and induced environment*

ISO 14623, *Space systems — Pressure vessels and pressurized structures — Design and operation*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

A-basis allowable

mechanical strength value above which at least 99 % of the population of values is expected to fall, with a confidence level of 95 %

3.2

allowable load

allowable stress

allowable strain

maximum load (stress, strain) that can be accommodated by a material/structure without potential rupture, collapse or detrimental deformation in a given environment

NOTE Allowable loads (stresses, strains) commonly correspond to the statistically based minimum ultimate strength, buckling strength and yield strength, respectively.

3.3

basic data

input data required to perform stress analysis and to determine margins of safety

3.4

B-basis allowable

mechanical strength value above which at least 90 % of the population of values is expected to fall, with a confidence level of 95 %

3.5

collapse

failure mode induced by quasi-static compression, shear or combined stress, accompanied by very rapid irreversible loss of load resistance capability

3.6

composite material

combination of materials different in composition or form on a macro scale

NOTE 1 The constituents retain their identities in the composite.

NOTE 2 The constituents can normally be physically identified, and there is an interface between them.

3.7

creep

process of a permanent material deformation resulting from long duration under constant or slowly altered load

NOTE The ultimate creep deformation, corresponding to the loss of material integrity is often much larger than ultimate deformation in the case of short time loading.

3.8

critical condition

most severe environmental condition in terms of load and temperature, or combination thereof, imposed on a structure, system, subsystem or component during service life

<https://standards.iteh.ai/catalog/standards/iso/0d66892e-33b3-48a1-a8a4-e29b78778ff5/iso-16454-2007>

3.9

critical location

structural point at which rupture, local buckling or detrimental deformation will first lead to structural failure

3.10

design safety factor

coefficient by which limit loads are multiplied in order to account for the statistical variations of loads and structure resistance, and inaccuracies in the knowledge of their statistical distributions

3.11

destabilizing load

load that produces compressive stress at critical location

3.12

detrimental yielding

(metallic structures) permanent deformation specified at the system level to be detrimental

3.13

development test

test to provide design information that can be used to check the validity of analytic technique and assumed design parameters, to uncover unexpected system response characteristics, to evaluate design changes, to determine interface compatibility, to prove qualification and acceptance procedures and techniques, to check manufacturing technology, or to establish accept/reject criteria

3.14**flight-type hardware test**

test of a flight structure article, a protoflight model, a representative special model or a structural element fabricated with the same or close to flight hardware technology

3.15**gauges**

thickness and other structure dimensions which relative scattering could result in significant effect on stress levels and/or margin of safety

3.16**knockdown coefficient**

empirical coefficient, other than design safety factor, which is used to determine analytically in a simple way actual or allowable loads or stresses, and which is defined on the basis of test results of flight-type structures, model structures or structural members as compared with corresponding stress analysis data

3.17**limit load**

maximum that can be expected during service life and in the presence of the environment

NOTE For stabilizing loads, the limit load is the minimum load.

3.18**loads**

volume forces and moments, concentrated and/or distributed over the structure surfaces or structure, caused by its interaction with environment and adjacent parts of vehicle, and accelerations

NOTE This includes pressures, external loads and enforced displacements acted at considered structural element, pretension, inertial loads caused by accelerations and thermal gradients.

3.19**loading case**

particular condition described in terms of loads/pressures/temperatures combinations, which can occur for some parts of structure at the same time during its service life

Document Preview**3.20****local buckling**

failure mode, which occurs when an alternative equilibrium mode of a structural member exists, and which could lead to detrimental deformation or rupture of that member if it occurs under loading

3.21**margin of safety**

M_S

expression of the margin of the limit load multiplied by design safety factor against the allowed load

Another representation of the concept:

$$M_S = \left(\frac{F_{AL}}{f_{DS} \times F_{LL}} \right) - 1 \quad (1)$$

where

F_{AL} is the allowable load under specified functional conditions (e.g. yield, rupture, collapse, local buckling);

F_{LL} is the limit load;

f_{DS} is the design safety factor.

NOTE Load can imply corresponding stress or strain.

3.22

minimum allowable

minimum material mechanical properties warranted by the supplier

3.23

pressure

external load caused by fluid action on a structural surface

NOTE The terms “pressure” and “load” are sometimes referred to simultaneously in this International Standard.

3.24

primary structure

part of a vehicle that carries the main loads and/or defines the fundamental resonance frequencies

3.25

rupture

loss of integrity by structure material differed from fatigue and ultimate creep deformation attainment, which could prevent the structure from withstanding load combinations

3.26

semi-finished item

product that is used for structure manufacturing or assembling

EXAMPLE

Sheets, plates, profiles, strips, etc.

3.27

stabilizing load

load which decreases compressive stresses if applied in conjunction with destabilizing loads

3.28

static strength

property of a structure, characterized by its capability to withstand loads and temperature combinations without rupture, collapse, detrimental local buckling and detrimental deformation

3.29

strength failure mode

condition of a structure or a structural member considered as a critical condition in accordance with stress analysis results

3.30

stress analysis

analytical procedure to determine structure stress/strain distribution, deformations and margins of safety

3.31

structure

primary structure, unit attachments, pressure/loads carrying elements of pressure vessels, loads carrying elements of appendages

3.32

structural mathematical model

analytical or digital presentation of a structure

NOTE

It is advisable that the model provides adequate description of the structure's response under loads/pressures/temperatures.

3.33

ultimate load

limit load multiplied by ultimate design safety factor

3.34

unit

part of a vehicle which is designed mainly to provide vehicle functioning and which differs from a structure