

SLOVENSKI STANDARD oSIST prEN 16946-1:2016

01-januar-2016

Pregled avtomatizacije stavb in izvršnih elementov ter tehničnega upravljanja stavb - Modul M10-11

Inspection of Building Automation, Controls and Technical Building Management - Module M10-11

Inspektion der Gebäudeautomation, Regelungstechnik und des Technischen Gebäudemanagements

<u>SIST EN 16946-1:2018</u>

https://standards.iteh.ai/catalog/standards/sist/64a293d6-9266-4431-908f-

Ta slovenski standard je istoveten z: prEN 16946-1

ICS:

97.120 Avtomatske krmilne naprave Automatic controls for za dom household use

oSIST prEN 16946-1:2016

en,fr,de

oSIST prEN 16946-1:2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 16946-1:2018</u> https://standards.iteh.ai/catalog/standards/sist/64a293d6-9266-4431-908f-2014aee3985f/sist-en-16946-1-2018

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

DRAFT prEN 16946-1

December 2015

ICS 97.120

English Version

Inspection of Building Automation, Controls and Technical Building Management - Module M10-11

Inspektion der Gebäudeautomation, Regelungstechnik und des Technischen Gebäudemanagements

This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee CEN/TC 247.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. prEN 16946-1:2015 E

Contents

Europ	ean foreword	4
Introd	uction	5
1	Scope	7
2	Normative references	7
3	Terms and definitions	7
4	Introduction	7
5	Inspection method	8
5.1	General	8
5.2	Inspection procedure	8
5.3	Major steps in the inspection	8
5.4	Determination of energy efficiency contribution	9
55	Weighting among huilding types	9
5.6	BAC overall energy performance scale and evaluation	9
010	bite overall energy performance scare and evaluation	
6	Inspection of a BAC in the phases of BAC project	10
6.1	General	10
6.2	Design phase	10
6.2.1	Activities	10
6.2.2	Role of the inspection	10
6.3	Engineering phase	10
6.3.1	Activities	10
6.3.2	Role of the inspection identicated on standards/sist/64a293d6-9266-4431-908f-	10
6.4	Installation phase	11
6.4.1	Activities	11
6.4.2	Role of the inspection	11
6.5	Completion phase	11
651	Activities	11
652	Role of the inspection	11
6.6	Note of the hispection	11
6.6.1	Canaral	11
662	Dele of the inspection	11
67	Operator instruction (training)	11
671	Conoral	12
672	Dele of the increation	12
0.7.2	Role of the hispection	12
0.0	Review and improve building performance.	12
6.9	Inspection of BACS sometime after the nandover	12
Annex	A (informative) Audit Processes	13
Annex	B (informative) Schematic energy flow and controls functions influencing the	
	efficiency	14
B.1	Summary	14
Annex	C (informative) Key Performance Indicators	15
C.1	General	15
C.2	Characteristics of KPI's	15

C.3	Gathering and evaluation method	15
Bibliog	graphy	17

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 16946-1:2018</u> https://standards.iteh.ai/catalog/standards/sist/64a293d6-9266-4431-908f-2014aee3985f/sist-en-16946-1-2018

European foreword

This document (prEN 16946-1:2015) has been prepared by Technical Committee CEN/TC 247 "Building Automation, Controls and Building Management", the secretariat of which is held by SNV.

This document is currently submitted to the CEN Enquiry.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 16946-1:2018</u> https://standards.iteh.ai/catalog/standards/sist/64a293d6-9266-4431-908f-2014aee3985f/sist-en-16946-1-2018

Introduction

This standard is part of a series of standards aiming at international harmonization of the methodology for the assessment of the energy performance of buildings, called "EPB set of standards".

As part of the "EPB set of standards" it complies with the requirements for the set of basic EPB documents prEN ISO 52000-1:2015 (see Normative references), CEN/TS 16628 and CEN/TS 16629 (see bibliography [2] and [3]) developed under a mandate given to CEN by the European Commission and the European Free Trade Association (Mandate M/480), and supports essential requirements of EU Directive 2010/31/EC on the energy performance of buildings (EPBD).

The standards issued by TC 247 for M/480 belong to the EPB set of standards and are in line with the over-arching standard (prEN ISO 52000-1:2015) and drafted in accordance with the basic principles and detailed technical rules developed in the Phase I of the mandate.

Also these standards are clearly identified in the modular structure developed to ensure a transparent and coherent EPB standard set. BAC (Building Automation and Control) is identified in the modular structure as Technical Building System M10. However, the standards of TC 247 deal with control accuracy, control functions and control strategies using standards communications protocol (these last standards don't belong to the EPB standards set).

To avoid a duplication of calculation due to the BAC (avoid double impact), no calculation are done in BAC EPB standard set, but in each underlying standard of EPB set of standards (from M1 to M9 in the Modular Structure), an IDENTIFIER developed and present in the M10 covered by EN 15232 is used where appropriate. These way of interaction is described in detailed in the Technical Report (prCEN ISO/TR 52000-2) accompanying the over-arching standard. As consequence, the Annex A and Annex B concept as EXCEL sheet with the calculation formulas used in the EPB standards are not applicable for the standards issued by TC 247 for M/480.

Table 1 shows the relative position of this standard within the EN EPB set of standards.

	Over- arching	Building (as such)	Technical Building System									
Submodule	Descriptions	Descriptions	Descriptions	Heating	Cooling	Ventilation	Humidification	Dehumidification	Domestic Hot waters	Lighting	Building automation and control	PV, wind,
sub1	M1	M2		M3	M4	M5	M6	M7	M8	M9	M10	M11
1	General	General	General									
2	Common terms and definitions; symbols, units and subscripts	Building Energy Needs	Needs									
3	Application	(Free) Indoor Conditions without Systems	Maximum Load and Power									

	Over- arching	Building (as such)	Technical Building System									
Submodule	Descriptions	Descriptions	Descriptions	Heating	Cooling	Ventilation	Humidification	Dehumidification	Domestic Hot waters	Lighting	Building automation and control	PV, wind,
sub1	M1	M2		M3	M4	M5	M6	M7	M8	М9	M10	M11
4	Ways to Express Energy Performance	Ways to Express Energy Performance	Ways to Express Energy Performance									
5	Building Functions and Building Boundaries	Heat Transfer by Transmission	Emission and control									
6	Building Occupancy and Operating Conditions	Heat Transfer by Infiltration and Ventilation	Distribution and control									
7	Aggregation of Energy Services and Energy Carriers	Internal Heat Gains	Storage and control)A] arc	RD ls.i	P] teh	RE I.ai	VI)	EV	1		
8	Building Partitioning	Solar Heat Gains	Generation and control	EN 16	946-1	:2018	202.1	6.000	6 4 4 2 1	0.0.01		
9	Calculated Energy Performance	Building Dynamics (thermal mass)	Load dispatching and operating conditions	5f/sist	-en-16	946-1	-2018	9-920)-443]	-7081	-	
10	Measured Energy Performance	Measured Energy Performance	Measured Energy Performance									
11	Inspection	Inspection	Inspection								x	
12	Ways to Express Indoor Comfort		BMS									
13	External Environment Conditions											
14	Economic Calculation											

1 Scope

This European Standard defines guidelines for the inspection of installed an operational functions of Building Automation, Controls and Technical Building Management System including its configuration.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

prEN ISO 52000-1:2015, Energy performance of buildings – Overarching EPB assessment - Part 1: General framework and procedures

EN ISO 16484-1, Building automation and control systems (BACS) - Part 1: Project specification and implementation (ISO 16484-1)

prEN 15232-1:2015, Energy performance of buildings - Part 1: Impact of Building Automation, Controls and Building Management - Modules M10-4, 5, 6, 7, 8, 9, 10

prCEN/TR 15232-2:2015, Accompanying TR EN 15232-1

EN ISO 7345:1995, Thermal insulation - Physical quantities and definitions (ISO 7345:1987)

3 Terms and definitions tandards.iteh.ai)

For the purposes of this document, the terms and definitions given in EN ISO 7345:1995 and prEN ISO 52000-1:2015 apply. SIST EN 16946-1:2018

- https://standards.iteh.ai/catalog/standards/sist/64a293d6-9266-4431-908f-
- **4 Introduction** 2014aee3985f/sist-en-16946-1-20

Building Automation and Controls including Technical Building Management (BAC) contribute to the energy performance of buildings. BAC performance has a tendency to decline over time if not actively checked, maintained and adapted to the actual use of the building (independent of the building type). This performance depends on a number of factors. Some of the factors are:

- building / space usage changes;
- equipment maintenance and re-commissioning;
- manual interventions and missing "back to "normal" change;
- manual set point adjustments and back to "normal" procedure;
- plant performance issues;
- control issues and control equipment issues;
- misplaced sensors and mounting issues;
- etc.

The requirements in this standard describe a method and its steps and its 2 pillow approach to maintain the desired performance over time.

The inspection method basically delivers a tool variant (e.g. EXCEL) that allows keeping track of the inspected BAC portions.

This standard and its accompanying Technical Recommendations is defining an inspection method based on prEN 15232-1:2015 that shall evaluate the actual working functionality as well as giving a ranked list of improvement measures. In the accompanying TR an ongoing supervision method is described that allows constant monitoring of a BAC installation and its controlled equipment (if instrumented with BAC – equipment).

5 Inspection method

5.1 General

BAC (Building Automation and Controls) is the description of products, software, and engineering services for automatic controls, monitoring and optimization, human intervention, and management to achieve energy efficient, economical and safe operation of building services equipment.

This inspection method of Building Automation and Controls builds on the prEN 15232-1:2015 and its accompanying prCEN/TR 15232-2:2015.

The method inspects all existing BAC functions in a building according to Table 4 of prEN 15232-1:2015 assesses its influencing building area (e.g. rooms, space, zones) and its schedule of operation (all as is).

5.2 Inspection procedure

The recommended procedure is to follow the energy flow from "production" (e.g. boilers, chillers, air handles) to "distribution" (e.g. water networks, air distribution, electrical energy distribution) to "emission" (e.g. floor heating, radiators, fan coils, VAV boxes, light controls and blinds). A systematic procedure helps to easy asses all the installed systems and building services. Since the (functional-) inspection is more less independent of the characteristics of specific technical building systems and its controls the inspection shall be assessed with the skills of a controls engineer without exactly analysing the programming of specific control equipment. This abstraction allows given with Table 4 of the prEN 15232-1:2015 to inspect buildings equipped with any system or products. The recommended skill mix of an inspector shall be a trained and experienced controls engineer with experience in building operations.

An inspection includes technical building systems for lighting and blinds as well since the energy performance can be influenced significantly by integration the controls of those systems.

5.3 Major steps in the inspection

- a) Building type that is being inspected (building type that drives the most energy consumption is deciding its type).
- b) Ventilation system controls and scheduling.
- c) Heating system(s) controls and sequencing information of generators.
- d) Cooling systems controls and cold distribution.
- e) Zoning and grouping of building space usage including scheduling.
- f) Inclusion of controls integration of lighting and blinds.