INTERNATIONAL STANDARD

ISO 6134

Third edition 2005-03-01

Rubber hoses and hose assemblies for saturated steam — Specification

Tuyaux et flexibles en caoutchouc pour vapeur saturée — Spécification

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6134:2005 https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821ad3cbe8d66b5b/iso-6134-2005

Reference number ISO 6134:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6134:2005 https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821ad3cbe8d66b5b/iso-6134-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6134 was prepared by the European Committee for Standardization (CEN) in collaboration with Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Hoses (rubber and plastics)*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Throughout the text of this document, read "..this European Standard..." to mean "...this International Standard..."

This third edition cancels and replaces the Second Oedition (ISO 6134:1992), which has been technically revised. https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821ad3cbe8d66b5b/iso-6134-2005

Contents

Foreword	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 General requirements	1
5 Classification	2
6 Materials and construction	2
7 Dimensions and tolerances	2
8 Physical properties of compounds	3
9 Physical properties of finished hoses and hose assemblies	
10 Resistance to steam	5
11 Electrical resistance iTeh STANDARD PREVIEW	
 Marking	6
13 Design verification testing	7
14 Frequency of testing	7
Annex A (informative) Test frequency for hose assemblies in use5	9
Annex B (informative) Storage and admissible storage time	10
Annex C (normative) Design verification and routine tests	11
Annex D (informative) Test frequency for production acceptance tests	12
Bibliography	13

Foreword

This document (EN ISO 6134:2005) has been prepared by Technical Committee CEN/TC 218 "Rubber and plastics hoses and hose assemblies", the secretariat of which is held by BSI, in collaboration with Technical Committee ISO/TC 45 "Rubber and rubber products".

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2005, and conflicting national standards shall be withdrawn at the latest by September 2005.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6134:2005 https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821ad3cbe8d66b5b/iso-6134-2005

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6134:2005 https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821ad3cbe8d66b5b/iso-6134-2005

1 Scope

This document specifies requirements for two types of hoses and hose assemblies, low pressure with a maximum working pressure of 6 bar and high pressure with a maximum working pressure of 18 bar, made of rubber and hose fittings made of metal, designed to convey saturated steam and hot water condensate.

Each type is divided into two classes having either an oil resistant or non-oil resistant cover.

NOTE Information on the frequency of testing of hose assemblies in use and storage is given in Annex A and Annex B.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 27326:1993, Rubber and plastics hoses — Assessment of ozone resistance under static conditions (ISO 7326:1991)

EN 28033, Rubber and plastics hose — Determination of adhesion between components (ISO 8033:1991)

EN ISO 1402, Rubber and plastics hoses and hose assemblies — Hydrostatic testing (ISO 1402:1994)

EN ISO 1746, Rubber or plastics hoses and tubing R Bending tests (ISO 1746:1998, including technical corrigendum 1:1999)

EN ISO 4023:2001, Rubber hoses for steam Test methods (ISO 4023:1991)

EN ISO 4671, Rubber and plastics hoses and hose assemblies — Methods of measurement of dimensions (ISO 4671:1999) https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821a-

d3cbe8d66b5b/iso-6134-2005

EN ISO 8031:1997, Rubber and plastics hoses and hose assemblies — Determination of electrical resistance (ISO 8031:1993)

EN ISO 8330:2000, Rubber and plastics hose and hose assemblies — Vocabulary (ISO 8330:1998)

ISO 37, Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties

ISO 188, Rubber, vulcanized or thermoplastic — Accelerated ageing and heat resistance tests

ISO 1817, Rubber, vulcanised — Determination of the effect of liquids

ISO 4649:2002, Rubber, vulcanized or thermoplastic — Determination of abrasion resistance using a rotating cylindrical drum device

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN ISO 8330:2000 apply.

4 General requirements

Quick-release couplings shall not be used under any circumstances.

The end fittings used with the hose shall be of a type that provides for tightening-up during service, for example a clamp type to compensate for creep of the rubber compounds in the hose.

NOTE 1 Where superheated steam conditions occur, the service life of the product may be reduced.

NOTE 2 Vacuum caused by shutting off the hose assembly at both ends may precipitate "pop-corning" or separation of the lining.

5 Classification

This document specifies two types of hoses/hose assemblies to convey saturated steam and hot water condensate.

Type 1: low-pressure steam hose, maximum working pressure 6 bar ¹), corresponding to a temperature of 164 °C.

Type 2: high pressure steam hose, maximum working pressure 18 bar, corresponding to a temperature of 210 °C. Each type of hose is divided into:

- Class A: a non oil-resistant cover; or
- Class B: an oil-resistant cover.

Both types and classes can be either:

- a) electrically bonded, marked "M" (see Clause 11); or
- b) electrically conductive, marked " Ω " (see Clause 11). RD PREVEW

(standards.iteh.ai)

6 Materials and construction

SO 6134:2005

Hoses shall consist of a lining which is resistant to steam and hot water condensate and shall be uniform in quality, free of porosity, air holes, foreign inclusions and other detects 5134-2005

The reinforcement shall be textile for Type 1 and steel wire for Type 2, either braided, spiral or cord ply construction.

The cover shall give protection against mechanical damage and be resistant to heat, wear and environmental effects due to weather and short-term chemical exposure. It shall be pricked equally around the periphery and along the whole length of the hose in order to relieve any pressure built-up between the plies and the cover.

7 Dimensions and tolerances

7.1 Diameters, thickness of lining and cover, and bend radii

When determined in accordance with EN ISO 4671, the diameters, thickness of lining and cover, and the bend radii of the hoses shall conform to the values given in Table 1.

¹⁾ 1 bar = 0,1 MPa.

Dimensions in millimetres

Internal	diameter	Outside diameter		Thicknes	s min.	Bend radius min.
	Deviation limits		Deviation limits	Lining	Cover	
9,5	± 0,5	21,5	± 1,0	2,0	1,5	120
13	± 0,5	25	± 1,0	2,5	1,5	130
16	± 0,5	30	± 1,0	2,5	1,5	160
19	± 0,5	33	± 1,0	2,5	1,5	190
25	± 0,5	40	± 1,0	2,5	1,5	250
32	± 0,5	48	± 1,0	2,5	1,5	320
38	± 0,5	54	± 1,2	2,5	1,5	380
45	± 0,7	61	± 1,2	2.5	1.5	450
50	± 0,7	68	± 1,4	2,5	1,5	500
51	± 0,7	69	± 1,4	2,5	1,5	500
63	± 0,8	81	± 1,6	2,5	1,5	630
75	± 0,8	93	± 1,6	2,5	1,5	750
76	± 0,8	94	±1,6		7 1,5	750
100	± 0,8	120 AT	± 1,6	2,5	1,5	1 000
102	± 0,8	1 <mark>83tan</mark>	dar d s.itel	1.ai) ^{2,5}	1,5	1 000

7.2 Length of hoses and hose assemblies and tolerances

https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821a-

The length of the hose assembly is the overall measured distance from the sealing surfaces of the couplings from end to end.

The deviation limits of the hoses and hose assemblies shall be as follows:

 $I \le 1 \ 000 \ mm; \pm 10 \ mm;$

l > 1 000 mm: ± 1 %.

7.3 Concentricity

When determined in accordance with EN ISO 4671, the concentricity of the hose wall shall not exceed 1,0 mm for internal diameter hoses up to and including 51 mm and 1,5 mm for sizes above.

8 Physical properties of compounds

Tests shall be carried out on test sheets of 2,0 mm minimum thickness of equivalent cure to that of the hoses.

The physical properties of compounds shall conform to the values given in Table 2.

The recommended frequency of testing is illustrated in Table D.1.

Property	Unit	Requirements		Method of test
		Lining	Cover	
Tensile strength, min.	MPa	8	8	ISO 37 (dumb-bell test piece)
Elongation at break, min.	%	200	200	ISO 37 (dumb-bell test piece)
Ageing				ISO 188 (7 days at 125 °C for Type 1
- tensile strength change, max.	%	50	50	and 150 °C for Type 2, air oven
 elongation at break change, max. 	%	50	50	method)
Abrasion resistance				ISO 4649:2002, Method A
- black filled compound, max.	mm ³	—	200	
– non-black filled compound, max. coloured	mm ³	—	400	
Change in volume, max. (class B only)	%	—	100	ISO 1817, oil No. 3, 72 h at 100 °C

Table 2 — Physical properties of compounds

9 Physical properties of finished hoses and hose assemblies

The physical properties of finished hoses and hose assemblies shall conform to the values given in Table 3.

The minimum frequency of testing shall be in accordance with Clause 14.

Duonoutur				
Property	Unit	Requirements	Method of test	
Hoses		(Standard S.itelia	•)	
Burst pressure, min.		10 x the max. working pressure	EN ISO 1402	
Proof test pressure	—	No leakage or distortion at 5 x the	EN ISO 1402	
	https://s	amaxdworkingpressureards/sist/634ed1e	-3c94-47a1-821a-	
Adhesion between	kN/m	2,4 d3cbe8d66b5b/iso-6134-2005	EN 28033	
components, min.				
Bending test, (under	T/D	0,8	EN ISO 1746	
no pressure), min.				
Change in length, at	%	-3 to +8	EN ISO 1402	
proof test pressure				
Change in twist, max.	°/m	10	EN ISO 1402	
at proof test pressure				
Ozone resistance of	—	No cracking observed under x2	EN 27326:1993; Method 3, relative	
the cover		magnification	humidity (55 \pm 10) %, ozone	
			concentration $(50 \pm 5) \times 10^{-9}$, elongation	
			20 %, temperature 40 °C	
Hose assemblies				
Proof test pressure	_	No leakage or distortion at 5 x the	EN ISO 1402	
		max. working pressure		
Electrical resistance	Ω	$\leq 10^2$ /assembly for M-type	EN ISO 8031:1997, Method 4	
	Ω	6	EN ISO 8031:1997, Method 3.4, 3.5 or	
		$\leq 10^{7}_{9}$ assembly and	3.6	
	Ω	\leq 10° resistance between lining and		
		cover for Ω-type		
Short term	_	Clause 10	Clause 10	
steam test				
Long term	_	Clause 10	Clause 10	
steam test				

Table 3 - Physical properties of finished hoses and hose assemblies

10 Resistance to steam

10.1 Principle

Expose a hose assembly to a flow of saturated steam in accordance with the method described in EN ISO 4023:2001, Method B.

The steam pressure for testing Type 1 hose/hoses assembly shall be 6 bar and shall be 18 bar for Type 2 hose/hoses assembly.

10.2 Short term exposure

The number of cycles of 20 h steam on and 4 h steam off shall be 7, i.e. a period of 168 h. After this exposure, the change in any physical properties shall not exceed the values given in Table 4.

Table 4 — Permissible changes in properties after the short term test

Property	Type 1	Type 2
Maximum reduction in actual burst pressure, in %	25	10
Maximum reduction in lining elongation at break, in %	50	50
Minimum elongation at break of lining, in %	150	150
Maximum lining hardness increase, in IRHD	10	10

10.3 Long term test **iTeh STANDARD PREVIEW**

The number of cycles of 20 h steam on and 4 h steam off shall be 30, i.e. a period of 720 h.

10.4 Observations

<u>ISO 6134:2005</u>

https://standards.iteh.ai/catalog/standards/sist/634ed1e5-3c94-47a1-821a-

During either exposure, there shall be no leakage of steam through the hose wall. Following the test the lining shall not be cracked, blistered or pop-corned and the cover shall not be cracked or blistered.

10.5 Additional tests

On completion of either the short term test or the long term test at room temperature, bend the test piece through 180° for sizes up to and including 32 mm and 90° for sizes over 32 mm, four times over a mandrel of the appropriate radius given in Table 1.

Rotate the test piece through 90° between each bending operation.

After completion of the test there shall be no cracks in the bent position.

Measure the electrical resistance which shall not be greater than the values given in Table 3.

For safety requirements the electrical properties shall be measured after the bending procedure in both the 168 h and 720 h steam test.

11 Electrical resistance

The resistance between the hose couplings shall not exceed the value of 1 x $10^6 \Omega$.

This low electrical resistance of hose and hose assemblies can be obtained by two Methods:

a) Incorporating two low resistance bonding wires into the hose construction.