
Designation: C 1239 – 00 (Reapproved 2005)

Standard Practice for
Reporting Uniaxial Strength Data and Estimating Weibull
Distribution Parameters for Advanced Ceramics1

This standard is issued under the fixed designation C 1239; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the evaluation and subsequent
reporting of uniaxial strength data and the estimation of
probability distribution parameters for advanced ceramics that
fail in a brittle fashion. The failure strength of advanced
ceramics is treated as a continuous random variable. Typically,
a number of test specimens with well-defined geometry are
failed under well-defined isothermal loading conditions. The
load at which each specimen fails is recorded. The resulting
failure stresses are used to obtain parameter estimates associ-
ated with the underlying population distribution. This practice
is restricted to the assumption that the distribution underlying
the failure strengths is the two-parameter Weibull distribution
with size scaling. Furthermore, this practice is restricted to test
specimens (tensile, flexural, pressurized ring, etc.) that are
primarily subjected to uniaxial stress states. Section 8 outlines
methods to correct for bias errors in the estimated Weibull
parameters and to calculate confidence bounds on those esti-
mates from data sets where all failures originate from a single
flaw population (that is, a single failure mode). In samples
where failures originate from multiple independent flaw popu-
lations (for example, competing failure modes), the methods
outlined in Section 8 for bias correction and confidence bounds
are not applicable.

1.2 Measurements of the strength at failure are taken for one
of two reasons: either for a comparison of the relative quality
of two materials, or the prediction of the probability of failure
(or, alternatively, the fracture strength) for a structure of
interest. This practice will permit estimates of the distribution
parameters that are needed for either. In addition, this practice
encourages the integration of mechanical property data and
fractographic analysis.

1.3 This practice includes the following:
Section

Scope 1
Referenced Documents 2
Terminology 3
Summary of Practice 4
Significance and Use 5

Outlying Observations 6
Maximum Likelihood Parameter Estimators for Competing
Flaw Distributions

7

Unbiasing Factors and Confidence Bounds 8
Fractography 9
Examples 10
Keywords 11
Computer Algorithm MAXL X1
Test Specimens with Unidentified Fracture Origins X2

1.4 The values stated in SI units are to be regarded as the
standard.

2. Referenced Documents

2.1 ASTM Standards: 2

C 1145 Terminology of Advanced Ceramics
C 1322 Practice for Fractography and Characterization of

Fracture Origins in Advanced Ceramics
D 4392 Terminology for Statistically Related Terms3

E 6 Terminology Relating to Methods of Mechanical Test-
ing

E 178 Practice for Dealing With Outlying Observations
E 456 Terminology for Relating to Quality and Statistics
2.2 Military Handbook:4

MIL-HDBK-790 Fractography and Characterization of
Fracture Origins in Advanced Structural Ceramics

3. Terminology

3.1 Proper use of the following terms and equations will
alleviate misunderstanding in the presentation of data and in
the calculation of strength distribution parameters.

3.1.1 censored strength data—strength measurements (that
is, a sample) containing suspended observations such as that
produced by multiple competing or concurrent flaw popula-
tions.

3.1.1.1 Consider a sample where fractography clearly estab-
lished the existence of three concurrent flaw distributions
(although this discussion is applicable to a sample with any

1 This practice is under the jurisdiction of ASTM Committee C28 on Advanced
Ceramics and is the direct responsibility of Subcommittee C28.02 on Reliability.
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number of concurrent flaw distributions). The three concurrent
flaw distributions are referred to here as distributions A, B, and
C. Based on fractographic analyses, each specimen strength is
assigned to a flaw distribution that initiated failure. In estimat-
ing parameters that characterize the strength distribution asso-
ciated with flaw distribution A, all specimens (and not just
those that failed from Type A flaws) must be incorporated in
the analysis to ensure efficiency and accuracy of the resulting
parameter estimates. The strength of a specimen that failed by
a Type B (or Type C) flaw is treated as a right censored
observation relative to the A flaw distribution. Failure due to a
Type B (or Type C) flaw restricts, or censors, the information
concerning Type A flaws in a specimen by suspending the test
before failure occurred by a Type A flaw (1).5 The strength
from the most severe Type A flaw in those specimens that
failed from Type B (or Type C) flaws is higher than (and thus
to the right of) the observed strength. However, no information
is provided regarding the magnitude of that difference. Cen-
sored data analysis techniques incorporated in this practice
utilize this incomplete information to provide efficient and
relatively unbiased estimates of the distribution parameters.

3.2 Definitions:
3.2.1 competing failure modes—distinguishably different

types of fracture initiation events that result from concurrent
(competing) flaw distributions.

3.2.2 compound flaw distributions—any form of multiple
flaw distribution that is neither pure concurrent nor pure
exclusive. A simple example is where every specimen contains
the flaw distribution A, while some fraction of the specimens
also contains a second independent flaw distribution B.

3.2.3 concurrent flaw distributions—type of multiple flaw
distribution in a homogeneous material where every specimen
of that material contains representative flaws from each inde-
pendent flaw population. Within a given specimen, all flaw
populations are then present concurrently and are competing
with each other to cause failure. This term is synonymous with
“competing flaw distributions.”

3.2.4 effective gage section—that portion of the test speci-
men geometry that has been included within the limits of
integration (volume, area, or edge length) of the Weibull
distribution function. In tensile specimens, the integration may
be restricted to the uniformly stressed central gage section, or
it may be extended to include transition and shank regions.

3.2.5 estimator—well-defined function that is dependent on
the observations in a sample. The resulting value for a given
sample may be an estimate of a distribution parameter (a point
estimate) associated with the underlying population. The arith-
metic average of a sample is, for example, an estimator of the
distribution mean.

3.2.6 exclusive flaw distributions—type of multiple flaw
distribution created by mixing and randomizing specimens
from two or more versions of a material where each version
contains a different single flaw population. Thus, each speci-
men contains flaws exclusively from a single distribution, but

the total data set reflects more than one type of strength-
controlling flaw. This term is synonymous with “mixtures of
flaw distributions.”

3.2.7 extraneous flaws—strength-controlling flaws ob-
served in some fraction of test specimens that cannot be present
in the component being designed. An example is machining
flaws in ground bend specimens that will not be present in
as-sintered components of the same material.

3.2.8 fractography—analysis and characterization of pat-
terns generated on the fracture surface of a test specimen.
Fractography can be used to determine the nature and location
of the critical fracture origin causing catastrophic failure in an
advanced ceramic test specimen or component.

3.2.9 multiple flaw distributions—strength controlling flaws
observed by fractography where distinguishably different flaw
types are identified as the failure initiation site within different
specimens of the data set and where the flaw types are known
or expected to originate from independent causes.

3.2.9.1 Discussion—An example of multiple flaw distribu-
tions would be carbon inclusions and large voids which may
both have been observed as strength controlling flaws within a
data set and where there is no reason to believe that the
frequency or distribution of carbon inclusions created during
fabrication was in any way dependent on the frequency or
distribution of voids (or vice-versa).

3.2.10 population—totality of potential observations about
which inferences are made.

3.2.11 population mean—average of all potential measure-
ments in a given population weighted by their relative frequen-
cies in the population.

3.2.12 probability density function—function f (x) is a
probability density function for the continuous random variable
X if:

f ~x! $ 0
(1)

and

*
2`

`

f ~ x! dx 5 1 (2)

The probability that the random variable X assumes a value
between a and b is given by the following equation:

Pr~a , X , b! 5 *a

b
f~x! dx

(3)

3.2.13 sample—collection of measurements or observations
taken from a specified population.

3.2.14 skewness—term relating to the asymmetry of a
probability density function. The distribution of failure
strength for advanced ceramics is not symmetric with respect
to the maximum value of the distribution function but has one
tail longer than the other.

3.2.15 statistical bias—inherent to most estimates, this is a
type of consistent numerical offset in an estimate relative to the
true underlying value. The magnitude of the bias error typically
decreases as the sample size increases.

3.2.16 unbiased estimator—estimator that has been cor-
rected for statistical bias error.

5 The boldface numbers in parentheses refer to the list of references at the end of
this practice.
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3.2.17 Weibull distribution—continuous random variable X
has a two-parameter Weibull distribution if the probability
density function is given by the following equations:

f~x! 5 Sm
bDS x

bDm21

expF—S x
bD mG x.0 (4)

f~x! 5 0 x # 0 (5)

and the cumulative distribution function is given by the
following equations:

F~x! 5 1 2 expF 2 S x
bD mG x . 0 (6)

or

F~x! 5 0 x# 0 (7)

where
m = Weibull modulus (or the shape parameter) (>0), and
b = scale parameter (>0).

3.2.18 The random variable representing uniaxial tensile
strength of an advanced ceramic will assume only positive
values, and the distribution is asymmetrical about the mean.
These characteristics rule out the use of the normal distribution
(as well as others) and point to the use of the Weibull and
similar skewed distributions. If the random variable represent-
ing uniaxial tensile strength of an advanced ceramic is char-
acterized by Eq 4-7, then the probability that this advanced
ceramic will fail under an applied uniaxial tensile stress s is
given by the cumulative distribution function as follows:

Pf 5 1– exp F — S s

su
D mG s . 0 (8)

Pf 5 0 s # 0 (9)

where:
P f = probability of failure, and
su = Weibull characteristic strength.

Note that the Weibull characteristic strength is dependent on
the uniaxial test specimen (tensile, flexural, or pressurized ring)
and will change with specimen size and geometry. In addition,
the Weibull characteristic strength has units of stress and
should be reported using units of megapascals or gigapascals.

3.2.19 An alternative expression for the probability of
failure is given by the following equation:

Pf 5 1– exp F — *v
S s

s0
D m dV G s . 0 (10)

P f 5 0 s # 0 (11)

The integration in the exponential is performed over all
tensile regions of the specimen volume if the strength-
controlling flaws are randomly distributed through the volume
of the material, or over all tensile regions of the specimen area
if flaws are restricted to the specimen surface. The integration
is sometimes carried out over an effective gage section instead
of over the total volume or area. In Eq 10, s0 is the Weibull
material scale parameter. The parameter is a material property
if the two-parameter Weibull distribution properly describes
the strength behavior of the material. In addition, the Weibull

material scale parameter can be described as the Weibull
characteristic strength of a specimen with unit volume or area
loaded in uniform uniaxial tension. The Weibull material scale
parameter has units of stress·(volume)1/mand should be re-
ported using units of MPa·(m)3/m or GPa·(m) 3/m if the
strength-controlling flaws are distributed through the volume
of the material. If the strength-controlling flaws are restricted
to the surface of the specimens in a sample, then the Weibull
material scale parameter should be reported using units of
MPa·(m)

2/m

or GPa·(m) 2/m. For a given specimen geometry, Eq
8 and Eq 10 can be equated, which yields an expression
relating s 0 and su. Further discussion related to this issue can
be found in 7.6.

3.3 For definitions of other statistical terms, terms related to
mechanical testing, and terms related to advanced ceramics
used in this practice, refer to Terminologies D 4392, E 456,
C 1145, and E 6 or to appropriate textbooks on statistics (2345)
.

3.4 Symbols:

A = specimen area (or area of effective gage section, if
used).

b = gage section dimension, base of bend test specimen.
d = gage section dimension, depth of bend test speci-

men.
F(x) = cumulative distribution function.
f(x) = probability density function.
Li = length of the inner load span for a bend test

specimen.
L o = length of the outer load span for a bend test

specimen.
+ = likelihood function.
m = Weibull modulus.
m̂ = estimate of the Weibull modulus.
m̂U = unbiased estimate of the Weibull modulus.
N = number of specimens in a sample.
P f = probability of failure.
r = number of specimens that failed from the flaw

population for which the Weibull estimators are
being calculated.

t = intermediate quantity defined by Eq 27, used in
calculation of confidence bounds.

V = specimen volume (or volume of effective gage
section, if used).

X = random variable.
x = realization of a random variable X.
b = Weibull scale parameter.
e = stopping tolerance in the computer algorithm

MAXL.
µ̂ = estimate of mean strength.
s = uniaxial tensile stress.
si = maximum stress in the ith test specimen at failure.
sj = maximum stress in the jth test specimen at failure.
sO = Weibull material scale parameter (strength relative

to unit size) defined in Eq 10.
su = Weibull characteristic strength (associated with a

test specimen) defined in Eq 8.
ŝ O = estimate of the Weibull material scale parameter.
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ŝu = estimate of the Weibull characteristic strength.

4. Summary of Practice

4.1 This practice enables the experimentalist to estimate
Weibull distribution parameters from failure data. Begin by
performing a fractographic examination of each failed speci-
men (optional, but highly recommended) in order to charac-
terize fracture origins. Usually discrete fracture origins can be
grouped by flaw distributions. Screen the data associated with
each flaw distribution for outliers. Compute estimates of the
biased Weibull modulus and Weibull characteristic strength. If
necessary, compute the estimate of the mean strength. If all
failures originate from a single flaw distribution, compute an
unbiased estimate of the Weibull modulus and compute confi-
dence bounds for both the estimated Weibull modulus and the
estimated Weibull characteristic strength. Prepare a graphical
representation of the failure data along with a test report.

5. Significance and Use

5.1 Advanced ceramics usually display a linear stress-strain
behavior to failure. Lack of ductility combined with flaws that
have various sizes and orientations leads to scatter in failure
strength. Strength is not a deterministic property but instead
reflects an intrinsic fracture toughness and a distribution (size
and orientation) of flaws present in the material. This practice
is applicable to brittle monolithic ceramics that fail as a result
of catastrophic propagation of flaws present in the material.
This practice is also applicable to composite ceramics that do
not exhibit any appreciable bilinear or nonlinear deformation
behavior. In addition, the composite must contain a sufficient
quantity of uniformly distributed reinforcements such that the
material is effectively homogeneous. Whisker-toughened ce-
ramic composites may be representative of this type of
material.

5.2 Two- and three-parameter formulations exist for the
Weibull distribution. This practice is restricted to the two-
parameter formulation. An objective of this practice is to obtain
point estimates of the unknown parameters by using well-
defined functions that incorporate the failure data. These
functions are referred to as estimators. It is desirable that an
estimator be consistent and efficient. In addition, the estimator
should produce unique, unbiased estimates of the distribution
parameters (6). Different types of estimators exist, including
moment estimators, least-squares estimators, and maximum
likelihood estimators. This practice details the use of maximum
likelihood estimators due to the efficiency and the ease of
application when censored failure populations are encountered.

5.3 Tensile and flexural specimens are the most commonly
used test configurations for advanced ceramics. The observed
strength values are dependent on specimen size and geometry.
Parameter estimates can be computed for a given specimen
geometry ( m̂, ŝ u), but it is suggested that the parameter
estimates be transformed and reported as material-specific
parameters ( m̂, ŝ0). In addition, different flaw distributions (for
example, failures due to inclusions or machining damage) may
be observed, and each will have its own strength distribution
parameters. The procedure for transforming parameter esti-
mates for typical specimen geometries and flaw distributions is
outlined in 7.6.

5.4 Many factors affect the estimates of the distribution
parameters. The total number of test specimens plays a
significant role. Initially, the uncertainty associated with pa-
rameter estimates decreases significantly as the number of test
specimens increases. However, a point of diminishing returns
is reached when the cost of performing additional strength tests
may not be justified. This suggests that a practical number of
strength tests should be performed to obtain a desired level of
confidence associated with a parameter estimate. The number
of specimens needed depends on the precision required in the
resulting parameter estimate. Details relating to the computa-
tion of confidence bounds (directly related to the precision of
the estimate) are presented in 8.3 and 8.4.

6. Outlying Observations

6.1 Before computing the parameter estimates, the data
should be screened for outlying observations (outliers). An
outlying observation is one that deviates significantly from
other observations in the sample. It should be understood that
an apparent outlying observation may be an extreme manifes-
tation of the variability of the strength of an advanced ceramic.
If this is the case, the data point should be retained and treated
as any other observation in the failure sample. However, the
outlying observation may be the result of a gross deviation
from prescribed experimental procedure or an error in calcu-
lating or recording the numerical value of the data point in
question. When the experimentalist is clearly aware that a gross
deviation from the prescribed experimental procedure has
occurred, the outlying observation may be discarded, unless the
observation can be corrected in a rational manner. The proce-
dures for dealing with outlying observations are detailed in
Practice E 178.

7. Maximum Likelihood Parameter Estimators for
Competing Flaw Distributions

7.1 This practice outlines the application of parameter
estimation methods based on the maximum likelihood tech-
nique. This technique has certain advantages, especially when
parameters must be determined from censored failure popula-
tions. When a sample of test specimens yields two or more
distinct flaw distributions, the sample is said to contain
censored data, and the associated methods for censored data
must be employed. Fractography (see Section 9) should be
used to determine whether multiple flaw distributions are
present. The methods described in this practice include cen-
soring techniques that apply to multiple concurrent flaw
distributions. However, the techniques for parameter estima-
tion presented in this practice are not directly applicable to data
sets that contain exclusive or compound multiple flaw distri-
butions (7). The parameter estimates obtained using the maxi-
mum likelihood technique are unique (for a two-parameter
Weibull distribution), and as the size of the sample increases,
the estimates statistically approach the true values of the
population.

7.2 This practice allows failure to be controlled by multiple
flaw distributions. Advanced ceramics typically contain two or
more active flaw distributions each with an independent set of
parameter estimates. The censoring techniques presented

C 1239 – 00 (2005)

4

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM C1239-00(2005)

https://standards.iteh.ai/catalog/standards/sist/b3cad6eb-6adc-471b-8a88-d1ba105e9936/astm-c1239-002005

https://standards.iteh.ai/catalog/standards/sist/b3cad6eb-6adc-471b-8a88-d1ba105e9936/astm-c1239-002005


herein require positive confirmation of multiple flaw distribu-
tions, which necessitates fractographic examination to charac-
terize the fracture origin in each specimen. Multiple flaw
distributions may be further evidenced by deviation from the
linearity of the data from a single Weibull distribution (for
example, Fig. 1). However, since there are many exceptions,
observations of approximately linear behavior should not be
considered sufficient reason to conclude that only a single flaw
distribution is active.

7.2.1 For data sets with multiple active flaw distributions
where one flaw distribution (identified by fractographic analy-
sis) occurs in a small number of specimens, it is sufficient to
report the existence of this flaw distribution (and the number of
occurrences), but it is not necessary to estimate Weibull
parameters. Estimates of the Weibull parameters for this flaw
distribution would be potentially biased with wide confidence
bounds (neither of which could be quantified through use of
this practice). However, special note should be made in the
report if the occurrences of this flaw distribution take place in
the upper or lower tail of the sample strength distribution.

7.3 The application of the censoring techniques presented in
this practice can be complicated by the presence of test
specimens that fail from extraneous flaws, fractures that
originate outside the effective gage section, and unidentified
fracture origins. If these complications arise, the strength data
from these specimens should generally not be discarded.
Strength data from specimens with fracture origins outside the
effective gage section (8), and specimens with fractures that
originate from extraneous flaws should be censored; and the
maximum likelihood methods presented in this practice are
applicable.

NOTE 1—In this standard the gage section in four-point flexure is taken
to mean the region between the two outer loading rollers.

7.3.1 Specimens with unidentified fracture origins some-
times occur. It is imperative that the number of unidentified
fracture origins, and how they were classified, be stated in the

test report. This practice recognizes four options the experi-
mentalist can pursue when unidentified fracture origins are
encountered during fractographic examinations. The situation
may arise where more than one option will be used within a
single data set. Specimens with unidentified fracture origins
can be:

7.3.1.1 Option a—Assigned a previously identified flaw
distribution using inferences based on all available fracto-
graphic information,

7.3.1.2 Option b—Assigned the same flaw distribution as
that of the specimen closest in strength,

7.3.1.3 Option c—Assigned a new and as yet unspecified
flaw distribution, and

7.3.1.4 Option d—Be removed from the sample.

NOTE 2—The user is cautioned that the use of any of the options
outlined in 7.3.1 for the classification of specimens with unidentified
fracture origins may create a consistent bias error in the parameter
estimates. In addition, the magnitude of the bias cannot be determined by
the methods presented in 8.2

7.3.2 A discussion of the appropriateness of each option in
7.3.1 is given in Appendix X2. If the strength data and the
resulting parameter estimates are used for component design,
the engineer must consult with the fractographer before and
after performing the fractographic examination. Considerable
judgement may be needed to identify the correct option.
Whenever partial fractographic information is available,
7.3.1.1 is strongly recommended, especially if the data are used
for component design. Conversely, 7.3.1.4 is not recommended
by this practice unless there is overwhelming justification.

7.4 The likelihood function for the two-parameter Weibull
distribution of a censored sample is defined by the following
equation (9):

+H II
i51

r S m̂
ŝu
DS si

ŝu
Dm̂21

expF2S si

ŝu
Dm̂GJ II

j5 r 1 1

N

exp F2S sj

ŝu
Dm̂G

(12)

This expression is applied to a sample where two or more
active concurrent flaw distributions have been identified from
fractographic inspection. For the purpose of the discussion
here, the different distributions will be identified as flaw Types
A, B, C, etc. When Eq 12 is used to estimate the parameters
associated with the A flaw distribution, then r is the number of
specimens where Type A flaws were found at the fracture
origin, and i is the associated index in the first summation. The
second summation is carried out for all other specimens not
failing from type A flaws (that is, Type B flaws, Type C flaws,
etc.). Therefore, the sum is carried out from (j = r + 1) to N (the
total number of specimens) where j is the index in the second
summation. Accordingly, si and sj are the maximum stress in
the ith and jth test specimen at failure. The parameter estimates
(the Weibull modulus m̂ and the characteristic strength ŝu) are
determined by taking the partial derivatives of the logarithm of
the likelihood function with respect to m̂ and ŝ u and equating
the resulting expressions to zero. Note that ŝ u is a function of
specimen geometry and the estimate of the Weibull modulus.
Expressions that relate ŝu to the Weibull material scale
parameter ŝ0 for typical specimen geometries are given in 7.6.

NOTE 1—The boxes refer to surface flaws; the circles refer to volume
flaws.

FIG. 1 Example—Failure Data in Section 10.2
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Finally, the likelihood function for the two-parameter Weibull
distribution for a single-flaw population is defined by the
following equation:

+ 5 II
i51

N S m̂
ŝ u
DS si

ŝu
Dm̂21

expF 2 S si

ŝu
Dm̂G

(13)

where r was taken equal to N in Eq 12.
7.5 The system of equations obtained by maximizing the log

likelihood function for a censored sample is given by the
following equations (10):

(
i51

N

~si!
m̂ 1n~si!

(
i51

N

~si!
m̂

—
1
r(i51

r

1n~si! —
1
m̂ 5 0 (14)

and

ŝu 5 F~(
i51

N

~si!
m̂
!

1
rG 1/m̂

(15)

where:
r = number of failed specimens from a particular group of

a censored sample.

When a sample does not require censoring, r is replaced by
N in Eq 14 and Eq 15. Eq 14 is solved first for m̂. Subsequently
ŝu is computed from Eq 15. Obtaining a closed-form solution
of Eq 14 for m̂ is not possible. This expression must be solved
numerically. When there are multiple active flaw populations,
Eq 14 and Eq 15 must be solved for each flaw population. A
computer algorithm (entitled MAXL) that calculates the root of
Eq 14 is presented as a convenience in Appendix X1.

7.6 The numerical procedure in accordance with 7.5 yields
parameter estimates of the Weibull modulus ( m̂) and the
characteristic strength ( ŝu). Since the characteristic strength
also reflects specimen geometry and stress gradients, this
standard suggests reporting the estimated Weibull material
scale parameter ŝ0.

7.6.1 The following equation defines the relationship be-
tween the parameters for tensile specimens:

~ ŝ0! V 5 ~V!
1/~m̂!v

~ ŝu! V (16)

where V is the volume of the uniform gage section of the
tensile specimen, and the fracture origins are spatially distrib-
uted strictly within this volume. The gage section of a tensile
specimen is defined herein as the central region of the test
specimen with the smallest constant cross-sectional area.
However, the experimentalist may include transition regions
and the shank regions of the specimen if the volume (or area)
integration defined by Eq 10 is analyzed properly. This
procedure is discussed in 7.6.3. If the transition region or the
shank region, or both, are included in the integration, Eq 16 is
not applicable. For tensile specimens in which fracture origins
are spatially distributed strictly at the surface of the specimens
tested, the following equation applies:

~ ŝ 0!A 5 ~A!
1/~m̂!A

~ ŝ u!A (17)

where A = surface area of the uniform gage section.
7.6.2 For flexural specimen geometries, the relationships

become more complex (11). The following relationship is
based on the geometry of a flexural specimen found in Fig. 2.
For fracture origins spatially distributed strictly within both the
volume of a flexural specimen and the outer load span, the
following equation applies:

~ ŝ0!V 5 ~ ŝu!VUVFS Li

L o
D ~m̂! v 1 1G

2@~m̂! v 1 1#
2
U1/~m̂!V

(18)

where:
L i = length of the inner load span,
Lo = length of the outer load span,
V = volume of the gage section defined by the following

expression:

V 5 b d Lo (19)

and:
b,d = dimensions identified in Fig. 2.

For fracture origins spatially distributed strictly at the
surface of a flexural specimen and within the outer load span,
the following equation applies:

~ ŝ0!A 5 ~ ŝu! A
FL oS d

~m̂! A 1 1 1 bD SSLi

Lo
D ~m̂! A 1 1

~m̂! A 1 1
DG1/~m̂! A

(20)

7.6.3 Test specimens other than tensile and flexure speci-
mens may be utilized. Relationships between the estimate of
the Weibull characteristic strength and the Weibull material
scale parameter for any specimen configuration can be derived
by equating the expressions defined by Eq 8 and Eq 10 with the
modifications that follow. Begin by replacing s (an applied
uniaxial tensile stress) in Eq 8 with s max, which is defined as
the maximum tensile stress within the test specimen of interest.
Thus:

Pf 5 1 2 expF 2 Ss max

su
DmG

(21)

Also perform the integration given in Eq 10 such that

P f 5 1 2 expF 2kVSs max

s0
D mG

(22)

where k is a dimensionless constant that accounts for
specimen geometry and stress gradients. Note that in general,
k is a function of the estimated Weibull modulus m, and is
always less than or equal to unity. The product (kV) is often
referred to as the effective volume (with the designation VE).
The effective volume can be interpreted as the size of an

FIG. 2 Flexural Specimen Geometry
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