

SLOVENSKI STANDARD SIST EN 16602-60-13:2015

01-oktober-2015

Zagotavljanje varnih proizvodov v vesoljski tehniki - Zahteve za uporabo COSTkomponent

Space product assurance - Requirements for the use of COTS components

Raumfahrtproduktsicherung - Anforderungen für die Nutzung von COTS-Komponenten

Assurance produit des projets spatiaux - Exigences pour l'utilisation de composants commerciaux sur étagère (standards.iteh.ai)

Ta slovenski standard je istoveten Z: EN 16602-60-13:2015 https://standards.iten.arcatalog/standards/sist/2c496078-7187-4974-84bb-1415de49c0e2/sist-en-16602-60-13-2015

<u>ICS:</u>

49.140 Vesoljski sistemi in operacije Space systems and operations

SIST EN 16602-60-13:2015

en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 16602-60-13:2015</u> https://standards.iteh.ai/catalog/standards/sist/2c496d78-7f87-4974-84bb-1415de49c0e2/sist-en-16602-60-13-2015

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 16602-60-13

August 2015

ICS 49.140

English version

Space product assurance - Requirements for the use of COTS components

Assurance produit des projets spatiaux - Exigences pour l'utilisation de composants commerciaux sur étagère Raumfahrtproduktsicherung - Anforderungen für die Nutzung von COTS-Komponenten

This European Standard was approved by CEN on 16 November 2014.

CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom:0-13:2015

https://standards.iteh.ai/catalog/standards/sist/2c496d78-7f87-4974-84bb-1415de49c0e2/sist-en-16602-60-13-2015

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for CENELEC Members.

Ref. No. EN 16602-60-13:2015 E

Table of contents

European foreword4		
Introdu	uction4	ŀ
1 Scop	De7	7
2 Norn	native references)
3 Term	ns, definitions and abbreviated terms11	I
3.1	Terms from other standards11	1
3.2	Terms specific to the present standard11	1
3.3	Abbreviated terms12	2
3.4	Conventions Teh STANDARD PREVIEW 13	3
3.5	Nomenclature (standards.iteh.ai)	ł
4 Requ	uirements for class 1 components1	
5 Requ	<u>SIST EN 16602-60-13:2015</u> uirements ¹ for ^{//} class ¹ 2 ^{it} componentsrds/sist/2c496d78-7f87-4974-84bb36 1415de49c0e2/sist-en-16602-60-13-2015	5
	uirements for class 3 components59	
7 Qual	ity levels74	ŀ
8 Eval	uation and lot acceptance for retinned parts75	5
9 Pure	tin lead finish – risk analysis83	3
Annex	A (normative) Component control plan (CCP) - DRD84	ŀ
Annex	B (normative) Declared components list (DCL) - DRD88	5
Annex	C (normative) Internal Supplier's specification - DRD86	5
Annex	D (normative) Parts approval document - DRD88	3
Annex	E (informative) EEE documents delivery per review)
Annex	F (normative) Justification document - DRD90)
Annex	G (informative) Difference between the three classes	3
	H (informative) Flow chart for construction analysis and destructive sical analysis94	ł

Bibliography	
Dibilography	

Figures

Figure 4-1: Evaluation tests flow chart for Class 1 components	21
Figure 4-2: Lot acceptance tests flow chart for Class 1 components	28
Figure 5-1: Evaluation Tests flow charts for Class 2 components	42
Figure 5-2: Lot acceptance tests flow chart for Class 2 components	51
Figure 6-1: Lot acceptance test flow chart for Class 3 components	67
Figure 8-1: Evaluation flow chart for retinned parts – class 1 programmes	76
Figure 8-2: Lot acceptance flow chart for retinned parts – class 1 programmes	77
Figure 8-3: Evaluation flow chart for retinned parts – class 2 programmes	79
Figure 8-4: Lot acceptance flow chart for retinned parts – class 2 programmes	80
Figure 8-5: Evaluation flow chart for retinned parts – class 3 programmes	81
Figure 8-6: Lot acceptance flow chart for retinned parts – class 3 programmes	82

Tables

Table 4-1: Evaluation Tests for Class 1 components . P.R.E.V.I.E.W.	21
Table 4-2: Screening tests for Class 1 components.t.e.h.a.i.	25
Table 4-3: Lot acceptance tests for Class 1 components	29
Table 4-4: Documentation for Class Figure 16602-60-13:2015 https://standards.itch.ar/catalog/standards/sist/2c496d78-7187-4974-8466-	35
Table 5-1: Evaluation Tests for Class 20 components 2-60-13-2015	
Table 5-2: Screening tests for the Class 2 components	48
Table 5-3: Lot acceptance tests for Class 2 components	52
Table 5-4: Documentation for Class 2 components	58
Table 6-1: Evaluation tests for Class 3 components	63
Table 6-2: Screening tests for Class 3 components	65
Table 6-3: Lot acceptance tests for Class 3 components	68
Table 6-4: Documentation for Class 3 components	73
Table H-1 : Construction analysis and DPA	94
Table H-2 : Construction analysis sequence	95
Table H-3 : Destructive physical analysis sequence	97

European foreword

This document (EN 16602-60-13:2015) has been prepared by Technical Committee CEN/CLC/TC 5 "Space", the secretariat of which is held by DIN.

This standard (EN 16602-60-13:2015) originates from ECSS-Q-ST-60-13C.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2016, and conflicting national standards shall be withdrawn at the latest by February 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any EN covering the same scope but with a wider domain of applicability (e.g.) aerospace).

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Introduction

This European Standard is based on and complementary to ECSS-Q-ST-60C (with upward revisions). This standard can only be used in conjunction with ECSS-Q-ST-60C in its current revision. This standard applies only to commercial components - as defined in its scope - which meet defined technical parameters that are on the system application level demonstrated to be unachievable with existing space components or only achievable with qualitative and quantitative penalties. The standard requires that qualitative and quantitative penalties are specified, as applicable, as a minimum in terms of quantifiable parameters such as: functional capability, parts count, power dissipation, frequency of operation, data/signal processing efficiency, interconnect complexity, mass, volume, ...

For traceability to ECSS-Q-ST-60, the modifications or additions are marked in blue. Text in black colour is unmodified text.

The objective of the EEE component selection, control, procurement and use requirements is to ensure that EEE components used in a space project enables the project to meet its mission requirements.

Important elements of EEE component requirements include:

- a. component/programme management/15
- b. component selection, evaluation and approval,
- c. procurement,
- d. handling and storage,
- e. component quality assurance,
- f. specific components, and
- g. documentation.

The main tools which can be used to reach the objective are:

- a. concurrent engineering,
- b. standardization of component types,
- c. characterization of components,
- d. assessment of component manufacturers including declared competencies and processes,
- e. testing, screening, lot acceptance and periodic testing,
- f. procurement specifications,
- g. control and inspection,
- h. control of nonconforming materials,
- i. assessment and use of existing component data,
- j. application of specific control to mitigate risk for components with limited data or confidence, and

EN 16602-60-13:2015 (E)

k. information management.

The basic approach is as follows:

- The customer of a given space project defines the EEE component requirements within the boundaries of this standard. They appear in the appropriate clauses of the project requirements as defined in ECSS-M-ST-10.
- The supplier defines a component control plan to implement those requirements into a system which enables, for instance, to control the selection, approval, procurement, handling in a schedule compatible with his requirements, and in a cost-efficient way.
- The supplier ensures that the applicable parts requirements are passed down to lower level suppliers and ensure that they are compliant to these parts requirements.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 16602-60-13:2015</u> https://standards.iteh.ai/catalog/standards/sist/2c496d78-7f87-4974-84bb-1415de49c0e2/sist-en-16602-60-13-2015

Scope

This standard defines the requirements for selection, control, procurement and usage of EEE commercial components for space projects.

This standard is applicable to commercial encapsulated active monolithic parts (integrated circuits and discrete):

- diodes •
- microwave diodes •
- integrated circuits •
- microwave integrated circuits (MMIC) •
- transistors •iTmicrowave transistorsARD PREVIEW

This standard is not applicable to the commercial parts from the following families:

capacitors SIST EN 16602-60-13:2015 •

standards, iteh.ai/catalog/standards/sist/2c496d78-7f87-4974-84bb-connectors 1415de49c0e2/sist-en-16602-60-13-2015 https://

- crystals •
- filters
- fuses •
- heaters •
- inductors •
- microwave passive parts •
- oscillators •
- relays •
- resistors •
- switches •
- thermistors •
- transformers •
- cables & wires •
- hybrids •
- surface acoustic waves (SAW) •
- charge coupled devices (CCD) •
- active pixel sensors (APS) •

EN 16602-60-13:2015 (E)

In addition, the following families of EEE components are not addressed by the present ECSS standard but it can be used as guideline and revisited on case/case basis:

- photodiodes
- light emitting diodes (LED)
- phototransistors
- opto-couplers
- laser diodes

b

In line with ECSS-Q-ST-60, this standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.

The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures can decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.

a. Class 1 components are described in Clause 4

Class 2 components are described in Clause 5

c. Class 3 components are described in Clause 6

Annex G includes a diagram that summarizes the difference between these three classes for evaluation, screening and lot acceptance.

The requirements of this document are applicable to all parties involved at all levels in the integration of EEE commercial components into space segment hardware and launchers.

For easy tailoring and implementation of the requirements into a Requirement Management Tool, and for direct traceability to ECSS-Q-ST-60, requirements in this standards have been written in the way of a ECSS Applicability Requirement Matrix (EARM), as defined in Annex A of ECSS-S-ST-00 "ECSS system – Description, implementation and general requirements".

This standard may be tailored for the specific characteristics and constrains of a space project in conformance with ECSS-S-ST-00.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS standard. For dated references, subsequent amendments to, or revision of any of these publications do not apply. However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the more recent editions of the normative documents indicated below. For undated references, the latest edition of the publication referred to applies.

EN reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS system - Glossary of terms
EN 16602-60	ECSS-Q-ST GOTANI	Space product assurance - Electrical, electronic and electromechanical (EEE) components
EN 16602-60-14	ECSS-Q-ST-60-14	Space product assurance - Relifing procedure - EEE components
EN 16602-60-15	SISTEN ht ECSSaQhST360h15 /catalog/s 1415de49c0e2/	16602-60-13:2015 tSpaces/sproduct17@ssurance1-84blRadiation hardness siassurance-6EEE-confiponents
	ESCC 21300	Terms, definitions, abbreviations, symbols and units
	ESCC 24900	Minimum requirements for controlling environmental contamination of components
	ESCC 25500	Methodology for the detection of pure tin in the external surface finish of case and leads of EEE components
	MIL-STD-750	Test methods for semiconductor devices
	MIL-STD-883	Test method standard microcircuits
	JESD22-A101	Steady state temperature humidity bias life test
	JESD22-A110	Highly accelerated temperature and humidity stress test
	JESD22-A113	Preconditioning of plastic surface mount devices prior to reliability testing
	JESD22-A121	Test Method for Measuring Whisker Growth on Tin and Tin Alloy Surface Finishes
	JESD22-B106	Resistance to soldering temperature for through hole mounted devices
	JESD-201	Environmental Acceptance Requirements for Tin

	Whisker Susceptibility of Tin and Tin Alloy Surface Finishes
J-STD-020	Moisture/Reflow sensitivity classification for nonhermetic solid state surface mount devices
J-STD-033	Handling, packing, shipping and use of moisture/ reflow sensitive surface mount devices

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 16602-60-13:2015</u> https://standards.iteh.ai/catalog/standards/sist/2c496d78-7f87-4974-84bb-1415de49c0e2/sist-en-16602-60-13-2015

Terms, definitions and abbreviated terms

3.1 Terms from other standards

For the purpose of this standard, the terms and definitions from ECSS-S-ST-00-01 apply.

For the purpose of this standard, the following terms and definitions from ECSS-Q-ST-60 apply:

agent

characterization

iTeh STANDARD PREVIEW franchised distributor iteh.ai)

parts engineer SISTEN 16602-60-13:2015 https://standardpartsaprochreetandards/sist/2c496d78-7f87-4974-84bb-1415de49c0e2/sist-en-16602-60-13-2015 qualified parts

screening

space qualified parts

3.2 Terms specific to the present standard

3.2.1 traceability information (trace code)

unique identifier used by manufacturers to label and trace a quantity of components with a common manufacturing history and thereby common characteristics.

- NOTE 1 The notion of "lot of EEE parts" used for the radiation and lot acceptance tests is defined by the trace code.
- NOTE 2 Several trace codes can be part of a same delivery from the manufacturer or the distributor.
- NOTE 3 It is possible to have several diffusion lots (as per ESCC 21300) in the same trace code.

3.3 Abbreviated terms

For the purpose of this Standard, the abbreviated terms from ECSS-S-ST-00-01 and the following apply:

and the foll	owing uppiy.	
Abbrevia	tion	Meaning
AOQ	ä	average outgoing quality
ASIC	ä	application specific integrated circuit
BGA	1	ball grid array
CA	(construction analysis
CCD	(charge coupled device
ССР		component control plan
CN	(change notice
CoC	(certificate of conformance
CDR	(critical design review
CR	(change request
DCL	(declared components list
DPA	(destructive physical analysis
DRD	(document requirement definition
		deep Sub-Micron
Ea	(standard	activation energy
ECSS		European Coordination for Space Standardization
EEE https://standards		electrical/electronic, electromechanical
EFR 1	415de49c0e2/sist-en	uds/sist/2c496d78-7f87-4974-84bb- early failure rate n-16602-60-13-2015
ESCC]	European space components coordination
GSE	Į	ground support equipment
HAST]	highly accelerated stress test
HTRB	1	high temperature reverse bias
JD	j	justification document
LAT		lot acceptance test
LED		light emitting diode
LVT		lot validation testing
MMIC		microwave monolithic integrated circuit
PAD	-	parts approval document
РСВ		parts control board
PCN	-	process change notice
PDA	-	percent defective allowable
PED]	plastic encapsulated device
PIND]	particle impact noise detection
QBSD	t	full quadrant back scatter electron detector
QCI		quality conformance inspection
RFD	1	request for deviation

Abbreviation	Meaning
RH	relative humidity
RoHs	restriction of the use of certain hazardous substances
RVT	radiation verification testing
SCSB	Space Components Steering Board
SAM	scanning accoustic microscopy
SEM	scanning electron microscope
SMD	surface mount device
TCI	technology conformance inspection
Tg	glassivation temperature
ТНВ	temperature humidity bias
Тј	junction temperature
T/C	thermal cycling

3.4 Conventions STANDARD PREVIEW

- a. The term "EEE component" is synonymous with the terms "EEE Part", "Component" or just "Part".
- b. The term <u>"for approval" means that a decision of the approval authority</u> https://staris.necessary.for continuing the process_{7687-4974-84bb}
 - c. The term for review means that raised reviewers comments are considered and dispositioned.
 - d. The term "for information" means that no comments are expected about the delivered item.
 - e. For the purpose of clear understanding of this document, hereunder is a listing of component categories which are covered by the term EEE component, encapsulated or non-encapsulated, irrespective of the quality level:
 - 1. Capacitors
 - 2. Connectors
 - 3. Crystals
 - 4. Discrete semiconductors (including diodes, transistors)
 - 5. Filters
 - 6. Fuses
 - 7. Magnetic components (e.g. inductors, transformers, including inhouse products)
 - 8. Monolithic Microcircuits (including MMICs)
 - 9. Hybrid circuits