INTERNATIONAL STANDARD

ISO 9809-1

Second edition 2010-04-15

Gas cylinders — Refillable seamless steel gas cylinders — Design, construction and testing —

Part 1:

Quenched and tempered steel cylinders with tensile strength less than 1 100 MPa

Bouteilles à gaz — Bouteilles à gaz rechargeables en acier sans soudure — Conception, construction et essais —

Partie 1: Bouteilles en acier trempé et revenu ayant une résistance à la traction inférieure à 1 100 MPa

https://standards.iteh.avcatalog/standards/sist/09aa25f7-fa36-417b-b423-4fb2cb5bd312/iso-9809-1-2010

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9809-1:2010 https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-4fb2cb5bd312/iso-9809-1-2010

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Cont	Contents P		
Forewo	ord	iv	
Introdu	uction		
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	2	
4	Symbols	2	
5	Inspection and testing	3	
6	Materials	4	
7	Design	7	
8	Construction and workmanship	11	
9	Type approval procedure	13	
10	Batch tests	15	
11	Tests/examinations on every cylinder ARD PREVIEW	24	
12	Certification (standards.iteh.ai)	25	
13	Marking	25	
Annex	A (informative) Description and evaluation of manufacturing imperfections and conditions for rejection of seamless steel gas cylinders at time of final inspection by the manufacturer	26	
Annov	B (normative) Ultrasonic examination		
	Annex B (normative) Type approval certificate		
	Annex C (informative) Type approval certificate		
RIBIIO	Bibliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9809-1 was prepared by Technical Committee ISO/TC 58, Gas cylinders, Subcommittee SC 3, Cylinder design.

This second edition cancels and replaces the first edition (ISO 9809-1:1999), which has been technically revised by the following: (standards.iteh.ai)

- a) the reduction of maximum sulfur content in 6.2.2 from 0,020 % to 0,010 %, which is now applicable to all strength levels;

 lSO 9809-1:2010

 https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-
- b) the note in 7.3 regarding limitation of the Factor was deleted (as required by the United Nations Recommendations on the Transport of Dangerous Goods: Model Regulations);
- c) the modification of provisions for ultrasonic examination in 8.4 to include ultrasonic examination on the cylindrical area to be closed, prior to the forming process;
- d) the addition of the requirement of a base check according to 9.2.3 for all cylinder types during prototype testing;
- e) the addition of the requirement of a base check according to 9.2.3 for cylinders made from continuously cast billet material during batch testing.

ISO 9809 consists of the following parts, under the general title *Gas cylinders* — *Refillable seamless steel gas cylinders* — *Design, construction and testing*:

- Part 1: Quenched and tempered steel cylinders with tensile strength less than 1 100 MPa
- Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1 100 MPa
- Part 3: Normalized steel cylinders

Stainless steel cylinders with tensile strength of less than 1 100 MPa will form the subject of a Part 4.

Introduction

This part of ISO 9809 provides a specification for the design, manufacture, inspection and testing of a seamless steel cylinder for worldwide usage. The objective is to balance design and economic efficiency against international acceptance and universal utility.

ISO 9809 (all parts) aims to eliminate existing concerns about climate, duplicate inspections and restrictions because of a lack of definitive International Standards. This part of ISO 9809 should not be construed as reflecting on the suitability of the practice of any nation or region.

This part of ISO 9809 addresses the general requirements on design, construction and initial inspection and testing of pressure receptacles of the United Nations *Recommendations on the Transport of Dangerous Goods: Model Regulations*.

It is intended to be used under a variety of regulatory regimes, but is suitable for use with the conformity assessment system in 6.2.2.5 of the above-mentioned Model Regulations.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9809-1:2010 https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-4fb2cb5bd312/iso-9809-1-2010

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9809-1:2010 https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-4fb2cb5bd312/iso-9809-1-2010

Gas cylinders — Refillable seamless steel gas cylinders — Design, construction and testing —

Part 1:

Quenched and tempered steel cylinders with tensile strength less than 1 100 MPa

1 Scope

This part of ISO 9809 specifies minimum requirements for the material, design, construction and workmanship, manufacturing processes, examination and testing at manufacture of refillable quenched and tempered seamless steel gas cylinders of water capacities from 0,5 I up to and including 150 I for compressed, liquefied and dissolved gases. This part of ISO 9809 is applicable to cylinders with a maximum actual tensile strength $R_{\rm ma}$ of less than 1 100 MPa.

NOTE 1 If desired, cylinders of water capacity less than 0,5 I and between 150 I and 500 I can be manufactured and certified to be in compliance with this part of ISO 9809.

NOTE 2 For quenched and tempered steel cylinders with maximum tensile strength greater than or equal to 1 100 MPa, see ISO 9809-2. For normalized steel cylinders, see ISO 9809-3.

https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-4fb2cb5bd312/iso-9809-1-2010

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 148-1, Metallic materials — Charpy pendulum impact test — Part 1: Test method

ISO 6506-1, Metallic materials — Brinell hardness test — Part 1: Test method

ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)

ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature

ISO 7438, Metallic materials — Bend test

ISO 9329-1, Seamless steel tubes for pressure purposes — Technical delivery conditions — Part 1: Unalloyed steels with specified room temperature properties

ISO 9712, Non-destructive testing — Qualification and certification of personnel

ISO 11114-1, Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 1: Metallic materials

ISO 11114-4, Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 4: Test methods for selecting metallic materials resistant to hydrogen embrittlement

ISO 13769, Gas cylinders — Stamp marking

Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

batch

quantity of up to 200 cylinders plus cylinders for destructive testing of the same nominal diameter, thickness, length and design made successively on the same equipment, from the same cast of steel and subjected to the same heat treatment for the same duration of time

3.2

burst pressure

 p_{b}

highest pressure reached in a cylinder during a burst test

3.3

design stress factor

ratio of equivalent wall stress at test pressure, p_h , to guaranteed minimum yield strength, R_{eq}

3.4

quenching

hardening heat treatment in which a cylinder, which has been heated to a uniform temperature above the upper critical point, Ac₃, of the steel, is cooled rapidly in a suitable medium

iTeh STANDARD PREVIEW

3.5

tempering toughening heat treatment which follows quenching, in which the cylinder is heated to a uniform temperature below the lower critical point, Ac₁, of the steel

ISO 9809-1:2010

3.6

https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-4fb2cb5bd312/iso-9809-1-2010

test pressure

required pressure applied during a pressure test

NOTE It is used for cylinder wall thickness calculation.

3.7

working pressure

settled pressure of a compressed gas at a uniform reference temperature of 15 °C in a full gas cylinder

3.8

yield strength

stress value corresponding to the upper yield strength, R_{eH} , or for steels which do not exhibit a defined yield, the 0,2 % proof strength (non-proportional extension), $R_{p0.2}$

See ISO 6892-1.

Symbols

- Calculated minimum thickness, in millimetres, of the cylindrical shell а
- Guaranteed minimum thickness, in millimetres, of the cylindrical shell ď
- Guaranteed minimum thickness, in millimetres, of a concave base at the knuckle (see Figure 2) a_1

- a_2 Guaranteed minimum thickness, in millimetres, at the centre of a concave base (see Figure 2)
- A Percentage elongation after fracture
- b Guaranteed minimum thickness, in millimetres, at the centre of a convex base (see Figure 1)
- Maximum permissible deviation of burst profile, in millimetres (see Figures 10 and 11)
- D Nominal outside diameter of the cylinder, in millimetres (see Figure 1)
- D_f Diameter, in millimetres, of former (see Figure 6)
- F Design stress factor (variable) (see 3.3)
- h Outside depth (concave base end), in millimetres (see Figure 2)
- H Outside height, in millimetres, of domed part (convex head or base end) (see Figure 1)
- $L_{\rm o}$ Original gauge length, in millimetres, as defined in ISO 6892-1 (see Figure 5)
- N Ratio of the diameter of the bend test former to actual thickness of test piece, t
- p_b Measured burst pressure, in bars¹⁾, above atmospheric pressure
- *P*_h Hydraulic test pressure, in bars, above atmospheric pressure
- Py Observed pressure when cylinder starts yielding during hydraulic burst test, in bars, above atmospheric pressure **iTeh STANDARD PREVIEW**
- r Inside knuckle radius, in millimetres (see Figures 1 and 2)
- $R_{\rm eg}$ Minimum guaranteed value of the yield strength (see 7.1.1), in megapascals, for the finished cylinder
- Rea Actual value of the yield strength in megapascals value of the fensile test (see 10.2) 4fb2cb5bd312/iso-9809-1-2010
- R_{ma} Minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder
- R_{ma} Actual value of tensile strength, in megapascals, as determined by the tensile test (see 10.2)
- So Original cross-sectional area of tensile test piece, in square millimetres, in accordance with ISO 6892-1
- t Actual thickness of the test specimen, in millimetres
- $\it t_{\rm m}$ average cylinder wall thickness at position of testing during the flattening test, in millimetres
- Ratio of distance between knife edges or platens in the flattening test to average cylinder wall thickness at the position of test
- V Water capacity of cylinder, in litres
- w Width, in millimetres, of the tensile test piece (see Figure 5)

5 Inspection and testing

NOTE Evaluation of conformity can be carried out according to the regulations recognized by the country(ies) in which the cylinders are intended to be used.

© ISO 2010 – All rights reserved

¹⁾ $1 \text{ bar} = 10^5 \text{ Pa} = 10^5 \text{ N/m}^2$.

ISO 9809-1:2010(E)

To ensure that the cylinders conform to this part of ISO 9809, they shall be subject to inspection and testing in accordance with Clauses 9, 10 and 11 by an inspection body (hereinafter referred to as "the inspector") authorized to do so.

Equipment used for measurement, testing and examination during production shall be maintained and calibrated within a documented quality management system.

6 Materials

6.1 General requirements

- **6.1.1** Materials for the manufacture of gas cylinders shall fall within one of the following categories:
- a) internationally recognized cylinder steels;
- b) nationally recognized cylinder steels;
- c) new cylinder steels resulting from technical progress.

For all categories, the relevant conditions specified in 6.2 and 6.3 shall be satisfied.

6.1.2 The material used for the manufacture of gas cylinders shall be steel, other than rimming quality, with non-ageing properties, and shall be fully killed with aluminium and/or silicon.

In cases where examination of this non-ageing property is required by the customer, the criteria by which it is to be specified should be agreed with the customer and inserted in the order.

- **6.1.3** The cylinder manufacturer shall establish means to identify the cylinders with the cast of steel from which they are made.

 https://standards.iteh.ai/catalog/standards/sist/09aa25f7-fa36-417b-b423-
- **6.1.4** Grades of steel used for cylinder manufacture shall be compatible with the intended gas service, e.g. corrosive gases and embrittling gases (see ISO 11114-1).
- **6.1.5** Wherever continuously cast billet material is used, the manufacturer shall ensure that there are no deleterious imperfections (porosity) in the material to be used for making cylinders (see 9.2.3).

6.2 Controls on chemical composition

- **6.2.1** The chemical composition of all steels shall be defined at least by:
- the carbon, manganese and silicon contents in all cases;
- the chromium, nickel and molybdenum contents or other alloying elements intentionally added to the steel;
- the maximum sulfur and phosphorus contents in all cases.

The carbon, manganese and silicon contents and, where appropriate, the chromium, nickel and molybdenum contents shall be given, with tolerances, such that the differences between the maximum and minimum values of the cast do not exceed the values shown in Table 1.

The combined content of the following elements: vanadium, niobium, titanium, boron and zirconium shall not exceed 0,15 %.

The actual content of any element deliberately added shall be reported and their maximum content shall be representative of good steel making practice.

Element	Maximum content (mass fraction)	Permissible range (mass fraction)
	%	%
Carbon	< 0,30 %	0,06
	≥ 0,30 %	0,07
Manganese	All values	0,30
Silicon	All values	0,30
Chromium	< 1,50 %	0,30
	≥ 1,50 %	0,50
Nickel	All values	0,40
Molybdenum	All values	0,15

6.2.2 Sulfur and phosphorus in the cast analysis of material used for the manufacture of gas cylinders shall not exceed the values shown in Table 2.

Table 2 — Maximum sulfur and phosphorus limits in % (mass fraction)

Sulfur Teh STANDARD PRE Phosphorus	VIEW,010 0,020
Sulfur and phosphortandards.iteh.ai	0,025

ISO 9809-1:2010

6.2.3 The cylinder manufacturer shall obtain and make available certificates of cast (heat) analyses of the steels supplied for the construction of gas cylinders -9809-1-2010

Should check analyses be required, they shall be carried out either on specimens taken during manufacture from the material in the form as supplied by the steel maker to the cylinder manufacturer or from finished cylinders. In any check analysis, the maximum permissible deviation from the limits specified for the cast analyses shall conform to the values specified in ISO 9329-1.

6.3 Typical steels

Two typical internationally recognized steel types which have provided safe performance over many years are:

- a) chromium molybdenum steel (quenched and tempered);
- b) carbon manganese steel (quenched and tempered).

The chemical compositions of these steels, subject to the controls specified in 6.2.1, are given in Table 3.

Table 3 — Internationally recognized steel compositions (mass fraction)

Element	Steel grade and conditions	
	CrMo (Q and T)	CMn (Q and T)
	%	%
Carbon	0,25 to 0,38	0,38 max.
Silicon	0,10 to 0,40	0,1 to 0,35
Manganese	0,40 to 1,00	1,35 to 1,75
Phosphorus	0,020 max.	0,020 max.
Sulfur	0,020 max.	0,020 max.
Chromium	0,8 to 1,20	
Molybdenum	0,15 to 0,40	

The actual range for each element shall be in accordance with 6.2.1 and 6.2.2 and good steel making practice. In particular, the limits specified in Table 2 take precedence over the ranges given in this table.

6.4 Heat treatment

- **6.4.1** The cylinder manufacturer shall certify the heat treatment process applied to the finished cylinders.
- **6.4.2** Quenching in media other than mineral oil is permissible provided that:
- the method produces cylinders free of cracks dards.iteh.ai)
- the manufacturer ensures that the rate of cooling does not produce any cracks in the cylinder.
- every production cylinder is subjected to a method of non-destructive testing to prove freedom from cracks, if the average rate of cooling in the medium is greater than 80 % of that in water at 20 °C without additives.
- during the production of cylinders, the concentration of the quenchant is checked and recorded during every shift to ensure that the limits are maintained. Further documented checks shall be carried out to ensure that the chemical properties of the quenchant are not degraded.
- **6.4.3** The tempering process shall achieve the required mechanical properties.

The actual temperature to which a type of steel is subjected for a given tensile strength shall not deviate by more than 30 °C from the temperature specified by the cylinder manufacturer.

6.5 Failure to meet test requirements

In the event of failure to meet the test requirements, retesting or reheat treatment and retesting shall be carried out as follows to the satisfaction of the inspector.

- a) If there is evidence of a fault in carrying out a test or an error of measurement, a further test shall be performed. If the result of this test is satisfactory, the first test shall be ignored.
- b) If the test has been carried out in a satisfactory manner, the cause of test failure shall be identified.
 - 1) If the failure is considered to be due to the heat treatment applied, the manufacturer may subject all the cylinders implicated by the failure to a further heat treatment, e.g. if the failure is in a test representing the prototype or batch cylinders. Test failure shall require reheat treatment of all the represented cylinders prior to retesting.

This reheat treatment shall consist of either re-tempering or complete reheat treatment.

Whenever cylinders are reheat treated, the minimum guaranteed wall thickness shall be maintained.

Only the relevant prototype or batch tests needed to prove the acceptability of the new batch shall be performed again. If one or more tests prove even partially unsatisfactory, all cylinders of the batch shall be rejected.

2) If the failure is due to a cause other than the heat treatment applied, all cylinders with imperfections shall be either rejected or repaired such that the repaired cylinders pass the test(s) required for the repair. They shall then be re-instated as part of the original batch.

7 Design

7.1 General requirements

- **7.1.1** The calculation of the wall thickness of the pressure-containing parts shall be related to the guaranteed minimum yield strength, R_{eq} , of the material in the finished cylinder.
- **7.1.2** Cylinders may be designed with one or two openings along the central cylinder axis only.
- **7.1.3** For calculation purposes, the value of R_{eg} shall not exceed 0,90 R_{mg} .
- 7.1.4 The internal pressure upon which the calculation of wall thickness is based shall be the hydraulic test pressure p_h . (standards.iteh.ai)

7.2 Limitation on tensile strength

ISO 9809-1:2010

- **7.2.1** Where there is no risk of hydrogen embrittlement, the maximum value of the tensile strength is limited by the ability of the steel to meet the requirements of Clauses 9 and 10, but the maximum actual tensile strength, R_{ma} , shall always be less than 1 100 MPa for chrome-molybdenum steels and in no case exceed 1 030 MPa for carbon manganese steels.
- **7.2.2** Where there is a risk of hydrogen embrittlement (see ISO 11114-1), the maximum value of the tensile strength, as determined in 10.2, shall either be 880 MPa or, where the ratio $R_{\rm ea}/R_{\rm ma}$ does not exceed 0,9, be 950 MPa. Alternatively, the maximum tensile strength shall be established using data derived from the tests carried out in accordance with ISO 11114-4.
- **7.2.3** Other gas/material compatibility risks, including stress corrosion and hydrogen embrittlement mechanism by gases other than hydrogen, shall be assessed in accordance with ISO 11114-1 and ISO 11114-4.

7.3 Calculation of cylindrical shell thickness

The guaranteed minimum thickness of the cylindrical shell, a', shall not be less than the thickness calculated using Equations (1) and (2), and additionally, condition (3) shall be satisfied.

$$a = \frac{D}{2} \left(1 - \sqrt{\frac{10 \, FR_{\text{eg}} - \sqrt{3} \, P_{\text{h}}}{10 \, FR_{\text{eg}}}} \right) \tag{1}$$

where the value of *F* is the lesser of $\frac{0.65}{R_{\rm eg}/R_{\rm mg}}$ or 0.85.