

Reference number
ISO/IEC TR 21000-12:2005(E)

© ISO/IEC 2005

TECHNICAL
REPORT

ISO/IEC
TR

21000-12

First edition
2005-04-01

Information technology — Multimedia
framework (MPEG-21) —
Part 12:
Test Bed for MPEG-21 Resource Delivery

Technologies de l'information — Cadre multimédia (MPEG-21) —

Partie 12: Lit d'essai pour livraison de ressources MPEG-21

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2005
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2005 — All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

© ISO/IEC 2005 — All rights reserved iii

Contents Page

Foreword.. iv
Introduction ... vi
1 Scope.. 1
2 Overview of Functionality .. 1
2.1 Functionality of Test Bed ... 1
2.2 Target Use Cases .. 1
2.3 Relation with Reference Software ... 1
2.4 MPEG Technologies within Test Bed.. 1
2.5 API Overview and Language.. 2
3 Overall Architecture.. 2
4 Client Components ... 2
4.1 Introduction ... 2
4.2 Decoder Object.. 3
4.3 OutputBuffer Object.. 4
4.4 StreamBuffer Object ... 5
4.5 PacketLossMonitor Object... 6
4.6 ClientController Object... 6
5 Server Components .. 7
5.1 Introduction ... 7
5.2 MediaDatabase Object.. 8
5.3 ServerController Object.. 8
5.4 Streamer Object .. 9
5.5 File Format ... 10
5.6 DIA Object .. 10
6 Common Components.. 11
6.1 Introduction ... 11
6.2 PacketBuffer Object.. 11
6.3 QoSDecision Object.. 14
6.4 IPMP Objects ... 14
6.4.1 MessageRouter Object ... 15
6.4.2 ToolManager Object.. 16
6.4.3 IPMPTool Object.. 16
6.4.4 IPMPFilter Object .. 17
6.4.5 Terminal ... 18
7 Network Emulator and Network Profile Format ... 18
7.1 Introduction ... 18
7.2 Network profile file format.. 19
7.3 Synchronization between network profiles and streaming sessions ... 20
Bibliography ... 21

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

iv © ISO/IEC 2005 — All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 21000-12, which is a Technical Report of type [3], was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and
hypermedia information.

ISO/IEC TR 21000 consists of the following parts, under the general title Information technology — Multimedia
framework (MPEG-21):

— Part 1: Vision, Technologies and Strategy [Technical Report]

— Part 2: Digital Item Declaration

— Part 3: Digital Item Identification

— Part 5: Rights Expression Language

— Part 6: Rights Data Dictionary

— Part 7: Digital Item Adaptation

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

© ISO/IEC 2005 — All rights reserved v

— Part 8: Reference Software

— Part 9: File Format

— Part 10: Digital Item Processing

— Part 11: Evaluation Tools for Persistent Association Technologies [Technical Report]

— Part 12: Test Bed for MPEG-21 Resource Delivery [Technical Report]

— Part 16: Binary Format

The following parts are under preparation:

— Part 4: Intellectual Property Management and Protection Components

— Part 15: Event Reporting

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

vi © ISO/IEC 2005 — All rights reserved

Introduction

This document describes the component API of ISO/IEC TR 21000-12: Test Bed for MPEG-21 Resource
Delivery. The test bed is mainly composed of a streaming player, a media server, and an IP network emulator.
This document describes the API of each components of the test bed to facilitate a component oriented
development process. This platform provides a flexible and fair test environment for evaluating scalable media
streaming technologies for MPEG contents over IP networks.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

TECHNICAL REPORT ISO/IEC TR 21000-12:2005(E)

© ISO/IEC 2005 — All rights reserved 1

Information technology — Multimedia framework (MPEG-21) —

Part 12:
Test Bed for MPEG-21 Resource Delivery

1 Scope

This Technical Report specifies a test bed that is designed to assist in performance assessment of MPEG-21,
Scalable Video Coding (SVC) for streaming applications and for the evaluation of resource delivery
technologies over unreliable packet-switched networks. A subset of MPEG-4 IPMP is also included in the test
bed so that encrypted streaming and layered access functionality of a DRM system can be tested for different
SVC designs.

2 Overview of Functionality

2.1 Functionality of Test Bed

This platform provides a flexible and fair test environment for evaluating scalable media streaming
technologies for MPEG contents over IP networks. In particular, the test bed is designed for the evaluation of
Scalable Video Coding (SVC). This test bed has capabilities of simulating different channel characteristics of
various networks, therefore,

- Various scalable codec (audio, video, scene composition) technologies could be evaluated.

- Various packetization methods and file formats can be evaluated.

- Various multimedia streaming rate control and error control mechanisms can be plugged into the test bed
and evaluated.

2.2 Target Use Cases

Currently, the test bed is targeted at scalable audio and video streaming applications with some DRM support.

2.3 Relation with Reference Software

It must be emphasized that the software provided with this TR is not part of the MPEG-21 reference software.
In addition to providing some useful utility software for resource delivery system development, this TR tries to
show a solid example of how MPEG technologies can be integrated together in a working system for scalable
audio/video streaming applications.

2.4 MPEG Technologies within Test Bed

The following MPEG technologies are supported by the test bed:

- MPEG scalable audio and video codecs

- MPEG-4 on IP

- MPEG-4 IPMP (a small subset)

- MPEG-21 DIA Network Adaptation QoS

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

2 © ISO/IEC 2005 — All rights reserved

The architecture and the API are not tied to any particular media codecs. However, only the MPEG-4 FGS
video and MPEG-4 BSAC audio are officially supported by the software.

2.5 API Overview and Language

The API is divided into three parts, namely, server component API, client component API, and common
component API. The network emulator descried in clause 7 is a standalone application that is not part of the
component-based framework. The programming language used to describe the API is C++. This is because
the project is mainly implemented using the C++ language, except for the network emulator GUI, which is
done in Java. This will make it easier for the implementers to follow the API and to design different modules
to merge into the test platform.

3 Overall Architecture

The overall architecture of the Test Bed is illustrated in Figure 1.

RTSP
mux with
terminal&
user XDI

Decoder

Media
Channels

(RTP, UDP)

Control
Channel

(RTSP,TCP)

RTSP
mux with

SDP

Packet
Buffer

Output
Buffer

Network
Emulator

Offline
Media

Encoder

TCP

Network
Profile

Server

Media
Database

Stream
BufferNetwork Interface

UDPUDP

Client

TCP

Client
Controller

control

RTP/
RTCP

RTP/
RTCP

RTSP
demux

with
terminal&
user XDI

Packet
Loss

Monitor
QoS

Decision

QoS
Decision

terminal
& user XDI

NISTnet

NISTnet

Network Interface
media

Packet
Buffer

media

1

1

CDI, XDI,
IOD

network
XDI

media

Server
Controller

IPMPFilter
(PostDIA)

IPMPFilter
(PreDecoder)

IPMPFilter
(PostDecoder)

User Characteristics

control

RTSP
demux

with SDP

Streamer

DIA

network
XDI

Figure 1 — Architecture of the resource delivery test bed

Subsequently, the various server and client components that can fit in this test-bed architecture are described
in clause 4.

4 Client Components

4.1 Introduction

This section lists the detail component APIs so that third party component providers can design their own
client modules that can be integrated into this test bed.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

© ISO/IEC 2005 — All rights reserved 3

4.2 Decoder Object

This is the base object for all decoders, including real-time and offline decoders. The task of fetching coded
units from the input streams and storing decoded units into the output stream is carried out by this base object.
This is done as follows:

1. Decoder gets some coded bits from the input bitstream by calling StreamBuffer::GetBitstreamData(). A
bitstream can contain multiple layers of sub-bitstreams. If no data in any layers of the sub-bitstream is
available, the Decoder’s thread is suspended till data is available.

2. Decoder calls a private virtual function, Decode(). This function is overloaded by specific decoders and
performs the actual decoding of a coding unit.

3. The output of Decode() is saved in a buffer via the method OutputBuffer::WriteDecodedData(). The GUI
can later calls OutputBuffer::GetDecodedData() to display (video) or play (audio) the decoded content.
A presentation timestamp will be provided in this later API.

Methods
The following methods are implemented by the base class Decoder.

Decoder()
The object constructor (serious initialization is done in Setup()). No work is done till Start() is called.

int Setup(int track_id, uint8 *config, int32 config_length, int32 codec_type, void* streambuffer_link,
void* outputbuffer_link)

This function initializes the decoder. The video header (or video configuration descriptor is passed in for
parameters like video width & height or audio frame size). config_length is the length in bits of config, and
streambuffer_link and outputbuffer_link are the pointers to StreamBuffer object and OutputBuffer object
respectively. A non-zero error code returns if it fails.

void Start()
Start the Decoder thread, Run(), to perform the decoder task.

void Close()
Must be called before the Decoder object is deleted in order to terminate the Decoder thread.

static void Run(void *)
This method, which runs the Decoder thread, fetches compressed units from the input StreamBuffer object,
calls Decode() to decode them, and saves the decoded presentation units to the output OutputBuffer object
through the OutputBuffer::WriteDecodedData() method. The function terminates when the input stream
returns END_OF_STREAM on a call to GetBitstreamData().

bool Decode()
Decode one coding unit. The function returns TRUE if successful.

uint32 GetAttributes(ATTRIBUTE_CODE code, void *value)
Depending on the value of code, the requested attribute is returned through the pointer parameter value. In
some codecs, this function returns meaningful values after the Setup() function (i.e. after the decoding of the
audio-visual configuration header). A nonzero error code returns if it fails. For some codecs (e.g. ITU-T
H.263), this function only returns meaningful values after decoding of a frame (after calling the function
Decode()).

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

4 © ISO/IEC 2005 — All rights reserved

When the attribute “SUPPORTED_CODEC_NAMES” is requested, the function returns a pointer of an array of
UTF-8 strings of codec names. Each string in the array begins with an one byte length field, followed by the
chacters. Strings are concatenated one after another, the whole string arrays ends with a zero byte. For
example, a Decoder object may returns a pointer points to the following string array:

{ 0x03, ‘A’, ‘S’, ‘P’, 0x03, ‘F’, ‘G’, ‘S’, 0x00 }.

The default implementation of this function always returns zero.

ATTRIBUTE_CODE is defined as follows:
typedef enum
{
 // common attributes
 SUPPORTED_CODEC_NAMES

 // for visual
 FRAME_WIDTH, // the width in pixels of a video frame
 FRAME_HEIGHT, // the height in pixels of a video frame
 FRAME_BITS_PER_PIXEL, // bits per pixel in a video frame
 FRAME_PIXEL_FORMAT, // pixel format in a video frame

 // for audio
 PITCH, // the pitch of an audio sample
 AUDIO_FREQUENCY, // the frequency of an audio sample
 NUM_CHANNELS, // number of audio channels
 BITS_PER_SAMPLE, // number of bits per audio sample
 AUDIO_CU_DURATION, // the duration in milliseconds of a sample
} ATTRIBUTE_CODE;

As you can see from this definition, codes for different types of decoders are mixed. A decoder is expected to
return value only for attribute codes that are relevant to it. Otherwise it returns zero. The returned attribute is
always type-casted to uint32. The method returns zero if the requested attribute is not recognized or available
by the decoder.

4.3 OutputBuffer Object

This object class is used as an abstraction of the output device (for either audio and video). The decoder,
after decoding, should dump the decoded data into this object. The client GUI would then send the data to the
actual device based on the timestamp.

Methods

OutputBuffer()
This is the object constructor.

int Setup(int32 buffer_size)
buffer_size is the size of one decoded data unit (e.g. an YCbCr video frame or a PCM audio frame) in bytes.

int WriteDecodedData(uint32 timestamp, uint8 *data, int32 data_length)
This method sends a decoded unit to the output buffer. The pointer *data points to the decoded frame and the
size of the decoded data is specified by data_length. The timestamp, timestamp, of the decoded frame is in
milliseconds. The function returns zero upon success, otherwise, it returns a non-zero code when it fails.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

ISO/IEC TR 21000-12:2005(E)

© ISO/IEC 2005 — All rights reserved 5

int GetDecodedData(uint32 *timestamp, uint8 **data, int32 *data_length)
The client GUI will call this method to render the decoded content (audio or video). The indirect pointer **data
returns a pointer to the decoded data and the size of the decoded data is returned via data_length. The
presentation time is returned via the parameter *timestamp. The client GUI should render the data at time
timestamp (in millisecond). The function returns zero upon success, otherwise, it returns a non-zero code
when it fails.

int ReleaseBuffer(void)
After client player gets decoded data, it will call this method to release the control to the buffer which is
obtained by using GetDecodedData().

4.4 StreamBuffer Object

StreamBuffer is a FIFO buffer that holds raw bitstream data. Even though the data structure is intended for
raw data bits, the actual implementation should record raw bitstream boundary “markers” set by the transport
layers, e.g. IP packet boundaries (see method GetBitstreamData() for more explanations), through some
auxiliary data structure.

Methods

StreamBuffer(int number_of_tracks)
This is the object constructor. number_of_tracks is the total number of media tracks (e.g. audio-visual tracks
or multiple levels/layers for scalable codecs).

int Setup(int track_id, int32 buffer_size, void *packetbuffer_link)
buffer_size is the size of the raw bitstream buffer in bytes. Packetbuffer_link is the link to PacketBuffer object.

int SetBookmark(int track_id, int32 bookmark_number)
This method records the current position in stream buffer to a bookmark array for track track_id, and the
corresponding index in this array is bookmark_number. This method is always called by Decoder object to do
backward searching preparation. It retruns a non-zero code when it fails.

int GotoBookmark(int track_id, int32 bookmark_number)
This method will move the current position to that recorded in the bookmark array by index bookmark_number
for track track_id. It returns a non-zero code when it fails.

int32 GetBitstreamData(int track_id, int32 nbytes, uint8 *data)
This method retrieves nbytes bytes from the track track_id of a StreamBuffer object, and returns the value to
the caller. The returned data is stored in the pointer data. The function returns zero upon success, otherwise,
returns a non-zero code when it fails.

int32 GetOffsetToNextDataBoundary(int track_id)
In a streaming-over-IP system, bitstream data has a natural boundary set by the transport layer (e.g. for each
frame, slice or video packet, etc.). This function returns the number of bits to the next marker (or packet
boundary) position in track track_id. Some decoders can use this information to avoid resync marker
searching. It returns zero if there is no further boundary point.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 21000-12:2005
https://standards.iteh.ai/catalog/standards/sist/42c9f5fe-4a7a-4595-86ad-

82eeea8780dd/iso-iec-tr-21000-12-2005

	D8SG:�+ƒ÷
a�ıO0èUu$⁄ÄÛ–º<^ü⁄]"=ÂRj1*Ý¯{�«çOﬁ¢´��÷Œþ��p¦{mDÄ¼X[¸x¾hıß”ı{þ0��^Óøè˘E9z,½ÁkVAp°Óy^%O%ÿ¥�èÎ±Ä

