

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXCHAPODHAS OPPAHUSALUS TO CTAHDAPTUSALUS ORGANISATION INTERNATIONALE DE NORMALISATION

Rolling bearings – Dynamic load ratings and rating life – Part I : Calculation methods

Roulements — Charges dynamiques de base et durée nominale — Partie I : Méthodes de calcul

First edition – 1977-03-15Teh STANDARD PREVIEW (standards.iteh.ai)

ISO 281-1:1977 https://standards.iteh.ai/catalog/standards/sist/7181ac3d-c714-4b63-adcebb9b76841f11/iso-281-1-1977

UDC 621.822

Ref. No. ISO 281/I-1977 (E)

Descriptors : rolling bearings, ball bearings, roller bearings, thrust ball bearings, roller thrust bearings, dynamic loads, ratings, life (durability), rules of calculation.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 281/ was developed by Technical Committee VIEW ISO/TC 4, *Rolling bearings*, and was circulated to the member bodies in January 1976. (standards.iteh.ai)

It has been approved by the member bodies of the following countries :

Australia	https://standards.iteh.ai/ca	talog/standards/sist/7181ac3d-c714-4b63-adce-
Bulgaria	Japan bb9t	576 Switzerland 281-1-1977
Canada	Korea, Rep. of	Turkey
Chile	Mexico	United Kingdom
Czechoslovakia	Netherlands	U.S.A.
France	Poland	U.S.S.R.
Germany	Romania	Yugosłavia
Hungary	South Africa, Rep. of	
India	Spain	

The member body of the following country expressed disapproval of the document on technical grounds :

Austria

This International Standard cancels and replaces ISO Recommendation R 281-1962, of which it constitutes a technical revision.

© International Organization for Standardization, 1977 •

Printed in Switzerland

In the Introductory Note to ISO/R 281-1962, *Rolling bearings – Methods of evaluating dynamic load ratings*, it was stated that "it is recognised that revisions of the calculations may be required from time to time as the result of improvements and new developments".

Since the 1950s, when ISO/R 281 was drawn up, experience has shown that a theoretical difference between the case where the inner ring rotates in relation to the load and that where the outer ring rotates in relation to the load can be disregarded in practice. Thus, the rotation factor can be deleted from a standard-ized calculation. In addition, the evaluation of bearing life for reliabilities greater than 90 % has become of more frequent interest. Finally, in cases where material with properties deviating from those of conventional bearing steel is used and/or where the lubrication is not quite adequate, it has been found justified to adjust the rating life.

iTeh Standard, the developments indicated above have been

considered dards.iteh.ai)

Part I, Calculation methods, contains the body of this International Standard, whilst Part II, Explanatory notes, gives supplementary background information regarding the derivation of formulae and factors given in Part I. https://standards.itch.ai/catalog/standards/sist/7181ac3d-c714-4h63-adcc-

bb9b76841f11/iso-281-1-1977

CO	NTENTS	Page
0	Introduction	1
1	Scope and field of application	1
2	Definitions	1
3	Symbols	2
4	Radial ball bearings	
4.1	Basic dynamic radial load rating	2
4.2	2 Dynamic equivalent radial load	5
4.3	Basic rating life	EVIEW
5	Thursd hall be avient	
5.1	Basic dynamic axial load rating (standards.iteh.a	5
5.2		
5.3	Basic rating life	1-c 6 714-4b63-adce-
6	Radial roller bearings	
6.	Basic dynamic radial load rating	7
6.2	2 Dynamic equivalent radial load	7
6.3	3 Basic rating life	8
7	Thrust roller bearings	
7.	1 Basic dynamic axial load rating	8
7.:	2 Dynamic equivalent axial load	9
7.:	3 Basic rating life	9
8	Adjusted rating life	
8.	1 General	9
8.	2 Life adjustment factor for reliability	10
8.	3 Life adjustment factor for material	10
8.4	4 Life adjustment factor for operating conditions	10

Rolling bearings – Dynamic load ratings and rating life – Part I: Calculation methods

0 INTRODUCTION

It is often impractical to establish the suitability of a bearing selected for a specific application by testing a sufficient number of bearings in that application. Other methods are therefore required to establish this suitability.

Life, as defined in sub-clause 2.1, represents the period of unimpaired performance of a rolling bearing when the bearing is properly mounted, adequately lubricated, protected from foreign matter and not otherwise subjected to extreme operating conditions. A reliable life calculation is therefore considered to be a suitable and advantageous substitute for testing. ileh STANDA

The purpose of this International Standard is to provide the required basis for this life calculation. (standard

Calculations according to this International Standard do not yield satisfactory results for bearings subjected to such application conditions which cause deviations from a normal load distribution in the bearing, for example misalignment, housing or shaft deflection, rolling element centrifugal forces or other high speed effects, and preload or extra large clearance in radial bearings. Where there is reason to assume that such conditions prevail, the user should consult the bearing manufacturer for recommendations and evaluation of equivalent load and life.

This International Standard is not applicable to designs where the rolling elements operate directly on a shaft or housing surface, unless that surface is equivalent in all respects to the bearing ring (or washer) raceway it replaces al)

Double row radial bearings and double direction thrust bearings are, when referred to in this International ISO 281-1 Standard, presumed to be symmetrical. 1 SCOPE AND FIELD OF APPL/ICATIONiteh.ai/catalog/standard

This International Standard sets out methods of calculating the basic dynamic load rating and rating life of rolling bearings within the size ranges shown in the relevant ISO publications, manufactured from good quality, hardened steel in accordance with good manufacturing practice and basically of conventional design as regards the shape of rolling contact surfaces.

This International Standard also specifies methods of calculating adjusted rating life to take into account various reliabilities, materials and operating conditions.

The present state of the art does not permit the inclusion in this International Standard of specifications such as, for example, that of the characteristics of good quality, hardened steel (analysis, inclusions, structure, hardness, etc.), or the inclusion of specific values of life adjustment factors for material and operating conditions. Revisions of this International Standard will therefore be required from time to time as the result of new developments or in the light of new information concerning specific bearing types.

Calculations according to this International Standard do not yield satisfactory results for bearings subjected to such application conditions and/or of such internal design which result in considerable truncation of the area of contact between the rolling elements and the ring raceways. Unmodified calculation results are thus not applicable, for example, to groove ball bearings with filling slots which project substantially into the ball/raceway contact area when the bearing is subjected to load in the application.

bb9b76841f11/iso-Further 97mitations concerning particular types of bearings are included in the relevant clauses.

2 DEFINITIONS

2.1 life : For an individual rolling bearing, the number of revolutions which one of the bearing rings (or washers) makes in relation to the other ring (or washer) before the first evidence of fatigue develops in the material of one of the rings (or washers) or rolling elements.

2.2 reliability (in the context of bearing life) : For a group of apparently identical rolling bearings, operating under the same conditions, the percentage of the group that is expected to attain or exceed a specified life.

The reliability of an individual rolling bearing is the probability that the bearing will attain or exceed a specified life.

2.3 basic rating life : For an individual rolling bearing, or a group of apparently identical rolling bearings operating under the same conditions, the life associated with 90 % reliability.

2.4 basic dynamic radial load rating: That constant stationary radial load which a rolling bearing can theoretically endure for a basic rating life of one million revolutions. In the case of a single row angular contact bearing, the radial load rating refers to the radial

component of that load which causes a purely radial displacement of the bearing rings in relation to each other.

2.5 basic dynamic axial load rating : That constant centric axial load which a rolling bearing can theoretically endure for a basic rating life of one million revolutions.

2.6 dynamic equivalent radial load : That constant stationary radial load under the influence of which a rolling bearing would have the same life as it will attain under the actual load conditions.

2.7 dynamic equivalent axial load : That constant centric axial load under the influence of which a rolling bearing would have the same life as it will attain under the actual load conditions.

2.8 roller diameter applicable in the calculation of load ratings : The diameter at the middle of the roller.

NOTE - For a tapered roller this is equal to the mean value of the diameters at the theoretical sharp corners at the large end and the small end of the roller.

For an asymmetrical convex roller this is an approximation for the diameter at the point of contact between the roller and the ribless raceway at zero load. **Hen SIA**

2.9 roller length applicable in the calculation of load are stilled adjustment factor for non-conventional ratings : The theoretical maximum length of contact material properties between a roller and that raceway where the contact is shortest.

X

Y

https://standards.iteh.ai/catalog/standards/opteratingconditionsb63-adce-NOTE – This is normally taken to be either the distance between 841f11/iso-281 the theoretical sharp corners of the roller minus the roller chamfers = limit value of F_a/F_r for the applicability of е or the raceway width excluding the grinding undercuts, whichever different values of factors X and Y is the smaller.

2.10 nominal contact angle : The angle between a plane perpendicular to the bearing axis and the nominal line of action of the resultant of the forces transmitted by a bearing ring to a rolling element.

3 SYMBOLS

- С, = basic dynamic radial load rating, newtons
- basic dynamic axial load rating, newtons C,
- $C_{\rm or}$ basic static radial load rating¹, newtons
- = basic static axial load rating¹⁾, newtons Coa
- D_{w} = ball diameter, millimetres
- D_{we} = roller diameter applicable in the calculation of load ratings, millimetres
- D_{pw} = pitch diameter of ball or roller set, millimetres
- F = bearing radial load = radial component of actual bearing load, newtons
- = bearing axial load = axial component of actual Fa bearing load, newtons

- L_{10} = basic rating life, million revolutions
- L_n = adjusted rating life for a reliability of (100 - n) %, million revolutions
- L_{10a} = adjusted rating life for non-conventional material properties and operating conditions, million revolutions
- = adjusted rating life for non-conventional material Lna properties and operating conditions and for a reliability of (100 - n) %, million revolutions
- L_{we} = roller length applicable in the calculation of load ratings, millimetres
- Ρ, = dynamic equivalent radial load, newtons
- = dynamic equivalent axial load, newtons Ρ,
 - = radial load factor
 - = axial load factor

R₉₀%PKEVIE

Ζ = number of balls or rollers in a single row bearing, number per row of a multi-row bearing with equal number of balls or rollers per row

life adjustment factor for a reliability other than

- ISO 281-1:1977 life adjustment factor for non-conventional
 - = a factor which depends on the geometry of the $f_{\rm c}$ bearing components, the accuracy to which the various components are made, and the material
 - i = number of rows of balls or rollers in a bearing
 - α nominal contact angle of a bearing, degrees

4 RADIAL BALL BEARINGS

4.1 Basic dynamic radial load rating

The basic dynamic load rating for radial and angular contact ball bearings is :

for
$$D_{\rm w} \le 25.4$$
 mm :
 $C_{\rm r} = f_{\rm c} (i \cos \alpha)^{0.7} Z^{2/3} D_{\rm w}^{-1.8}$
for $D_{\rm w} > 25.4$ mm :

$$C_{\rm a} = 3.647 f_{\rm a} (i \cos \alpha)^{0.7} Z^{2/3} D_{\rm m}^{1.4}$$

Values of factor f_{c} are given in table 1. They apply to bearings with a cross-sectional raceway groove radius not larger than $0,52 D_w$ in radial and angular contact groove

1) For definition and calculation method, refer to ISO 76, Rolling bearings - Static load ratings. (At present at the stage of draft : revision of ISO/R 76.)

ball bearing inner rings and 0,53 D_w in radial and angular contact groove ball bearing outer rings and self-aligning ball bearing inner rings.

The load-carrying ability of a bearing is not necessarily increased by the use of a smaller groove radius, but is reduced by the use of a larger radius than those indicated above.

4.1.1 Bearing combinations

a) When calculating the basic radial load rating for two similar single row radial contact groove ball bearings mounted side-by-side on the same shaft such that they operate as a unit (paired mounting), the pair is considered as one double row radial contact bearing.

b) When calculating the basic radial load rating for two similar single row angular contact ball bearings mounted

side-by-side on the same shaft such that they operate as a unit (paired mounting) in "back-to-back" or "face-toface" arrangement, the pair is considered as one double row angular contact bearing.

c) The basic radial load rating for two or more similar single row angular contact ball bearings mounted sideby-side on the same shaft such that they operate as a unit (paired or stack mounting) in "tandem" arrangement, properly manufactured and mounted for equal load distribution, is the number of bearings to the 0,7 power times the rating of one single row bearing.

If for some technical reason the bearing arrangement is regarded as a number of single row bearings which are replaceable independent of each other, the above paragraph does not apply.

TABLE 1 – Factor f_c for radial ball bearings

	iTeh STANDARD PREVIEW								
D _w cos a	-	Double row radial contact	Single row and double row self aligning	Single row radial contact separable ball bearings (magneto bearings)					
Dpw	double row angular contact groove ball bearings	groove ball bearings ISO 281-1:1977	ball bearings						
0,05	http x 6standards.iteh.ai	catalog/stan4lards/sist/718	1ac3d-c71474b63-adce-	16,2					
0,06	49,1 bl	9b76841f 46/5 so-281-1-1	977 18,6	17,4					
0,07	51,1	48,4	19,9	18,5					
0,08	52,8	50,0	21,1	19,5					
0,09	54,3	51,4	22,3	20,6					
0,10	55,5	52,6	23,4	21,5					
0,12	57,5	54,5	25,6	23,4					
0,14	58,8	55,7	27,7	25,3					
0,16	59,6	56,5	29,7	27,1					
0,18	59,9	56,8	31,7	28,8					
0,20	59,9	56,8	33,5	30,5					
0,22	59,6	56,5	35,2	32,1					
0,24	[´] 59,0	55,9	36,8	33,7					
0,26	58,2	55,1	38,2	35,2					
0,28	57,1	54,1	39,4	36,6					
0,30	56,0	53,0	40,3	37,8					
0,32	54,6	51,8	40,9	38,9					
0,34	53,2	50,4	41,2	39,8					
0,36	51,7	48,9	41,3	40,4					
0,38	50,0	47,4	41,0	40,8					
0,40	48,4	45,8	40,4	40,9					

ISO 281/I-1977 (E)

	Single row bearings			Double row bearings								
Bearing type		"Relative axial load" ¹⁾		$\frac{F_a}{F_r} \leqslant e$		$\frac{F_{a}}{F_{r}} > e$		$\frac{F_a}{F_r} \leqslant e$		$\frac{F_a}{F_r} > e$		е
				X	Ŷ	x	Y	x	Ŷ	x	Ŷ	
		$\frac{F_{a}}{C_{or}}$	$\frac{F_a}{iZD_w^2}$									
		0,014	0,172	1			2,30				2,30	0,19
		0,028	0,345				1,99			0,56	1,99	0,22
Padial con	test are ous	0,056	0,689		0	0,56	1,71				1,71	0,26
ball bearin	tact groove gs	0,084	1,03				1,55				1,55	0,28
Dan Dearn		0,11	1,38				1,45	1	0		1,45	0,30
		0,17	2,07				1,31				1,31	0,34
		0,28	3,45				1,15				1,15	0,38
		0,42	5,17				1,04				1.04	0,42
		0,56	6,89				1,00				1,00	0,44
	α	<u>iFa</u> C _{or}	$\frac{F_a}{Z D_w^2}$									
									0.70		2.74	0.00
		0,014	0,172	1		1	his type use		2,78		3,74	0,23 0,26
		0,028 0,056	0,345 0,689				', Y and e s applicable		2,40 2,07		3,23 2,78	0,26 0,30
							••					
	5°	0,085	1,03	1	0	to single row radial contact			1,87		2,52	0,34
		0,11	1,38 2,07	1		1	ve ball	1	1,75 1,58	0,78	2,36 2,13	0,36 0,40
		0,17				beari						
		0,28	1 ^{3,45} 5,17	ST A	AN	DA	RD P	RE	V ^{1,39} 1,26	I	1,87	0,45
		0,42 0,56	6,89				1	ai	1,20		1,69 1,63	0,50 0,52
			· · · ·	(st:	anc	lar	ds.itel	I.al				
		0,014 0,029	0,172 0,345		Ī	[<u>SO 28</u>]	1,88		2,18 1,98		3,06 2,78	0,29 0,32
	10°	0.057	0.689				<u>1,71</u> <u>1-1:1977</u> 1,52				2,78	0,32
		nttp	0%/ Our function	iteh.ai	catalo	g/stand	ards/sist/718	lac3d-		adce-		0,38
		0,086	1,03 1,38	bl	o9b76	841111 0,46	/iso-1281-1-1 1,34	977 1	1,63 1,55	0,75	2,29 2,18	0,38
Angular		0,17	2,07			0,40	1,23		1,42	0,75	2,00	0,44 0,44
contact											1,79	0,49
groove ball		0,29 0,43	3,45 5,17				1,10 1,01		1,27 1,17		1,79	0,49 0,54
bearings		0,57	6,89				1,00		1,16		1,63	0,54
		0,015	0,172		<u>+</u>	<u> </u>	1,47	<u> </u>	1,65		2,39	0,38
	15°	0,015	0,172	1			1,47		1,65		2,39	0,38
		0,058	0,689	1			1,30		1,46		2,11	0,43
		0,087	1,03				1,23		1,38		2,00	0,46
		0,12	1,38	1	0	0,44	1,19	1	1,34	0,72	1,93	0,47
		0,17	2,07				1,12		1,26		1,82	0,50
		0,29	3,45	1			1,02		1,14		1,66	0,55
		0,44	5,17				1,00		1,12		1,63	0,56
		0,58	6,89				1,00		1,12		1,63	0,56
	20°	-	-			0,43	1,00		1,09	0,70	1,63	0,57
	25°	-	-	1	ĺ	0,41	0,87		0,92	0,67	1,41	0,68
	30°	-	-	1	0	0,39	0,76	1	0,78	0,63	1,24	0,80
	35°	-	-	1		0,37	0,66		0,66	0,60	1,07	0,95
	40°	-	-			0,35	0,57		0,55	0,57	0,93	1,14
	45°	_				0,33	0,50		0,47	0,54	0,81	1,34
	a ball bearing	Self-aligning ball bearings				0,40	0,4 cot α	1	0,42 cot α	0,65	0,65 cot α	1,5 tan α
Self-alignin												

1) Permissible maximum value depends on bearing design (internal clearance and raceway groove depth).

Values of X, Y and e for intermediate "relative axial loads" and/or contact angles are obtained by linear interpolation.

4.2 Dynamic equivalent radial load

The equivalent radial load for radial and angular contact ball bearings, under constant radial and axial loads, is

$$P_r = XF_r + YF_a$$

Values of factors X and Y are given in table 2.

4.2.1 Bearing combinations

a) When calculating the equivalent radial load for two similar single row angular contact ball bearings mounted side-by-side on the same shaft such that they operate as a unit (paired mounting) in "back-to-back" or "face-toface" arrangement, the pair is considered as one double row angular contact bearing.

b) When calculating the equivalent radial load for two or more similar single row ball bearings mounted side-by-side on the same shaft such that they operate as a unit (paired or stack mounting) in "tandem" arrangement, the values of X and Y for a single row bearing are used. The "relative axial load" (see table 2) is established by using i = 1 and the F_a and C_o values which both refer to one of the bearings only (even through the F_r and F_a values referring to the total loads are used for the calculation of the equivalent load for the complete arrangement).

4.3 Basic rating life

5 THRUST BALL BEARINGS

5.1 Basic dynamic axial load rating

5.1.1 Single row bearings

The basic dynamic axial load rating for single row, single or double direction thrust ball bearings is

for
$$D_{\rm w} \le 25.4 \text{ mm } \alpha = 90^{\circ}$$
:
 $C_{\rm a} = f_{\rm c} Z^{2/3} D_{\rm w}^{-1.8}$
for $D_{\rm w} \le 25.4 \text{ mm } \alpha \neq 90^{\circ}$:
 $C_{\rm a} = f_{\rm c} (\cos \alpha)^{0.7} \tan \alpha Z^{2/3} D_{\rm w}^{-1.8}$
for $D_{\rm w} > 25.4 \text{ mm } \alpha = 90^{\circ}$:
 $C_{\rm a} = 3.647 f_{\rm c} Z^{2/3} D_{\rm w}^{-1.4}$
for $D_{\rm w} > 25.4 \text{ mm } \alpha \neq 90^{\circ}$:
 $C_{\rm a} = 3.647 f_{\rm c} (\cos \alpha)^{0.7} \tan \alpha Z^{2/3} D_{\rm w}^{-1.4}$

Z is the number of balls carrying load in one direction.

Values of factor f_c are given in table 3 and apply to bearings with a cross-sectional raceway groove radius not larger than 0.54 D_w . The load carrying ability of a bearing is not necessarily increased by the use of a smaller groove

radius, but is reduced by the use of a larger groove radius $\underline{ISO\ 281-1:1977}$ than that indicated above.

The basic rating life for a radial ball bearing is https://standards.iten.ai/catalog/standards/sist/7181ac3d-c714-4b63-adce-/C \3 bb9b76841f11/iso-281-1-1977

$$L_{10} = \left(\frac{C_{\rm r}}{P_{\rm r}}\right)^3$$

The values of C_r and P_r are calculated in accordance with 4.1 and 4.2.

This life formula is also used for the evaluation of the life of two or more single row bearings operating as a unit, as referred to in 4.1.1. In this case the load rating C_r is calculated for the complete bearing arrangement and the equivalent load P_r is calculated for the total loads acting on the arrangement, using the values of X and Y indicated in 4.2.1.

The life formula gives satisfactory results for a broad range of bearing loads. However, extra heavy loads may cause detrimental plastic deformations at the ball/raceway contacts. The user should therefore consult the bearing manufacturer to establish the applicability of the life formula in cases where P_r exceeds $C_{\rm or}$ or 0,5 C_r , whichever is the smaller.

5.1.2 Bearings with two or more rows of balls

The basic dynamic axial load rating for thrust ball bearings, with two or more rows of similar balls carrying load in the same direction, is

$$C_{a} = (Z_{1} + Z_{2} + \dots + Z_{n}) \times \left[\left(\frac{Z_{1}}{C_{a1}} \right)^{10/3} + \left(\frac{Z_{2}}{C_{a2}} \right)^{10/3} + \dots + \left(\frac{Z_{n}}{C_{an}} \right)^{10/3} \right]^{-3/10}$$

The load ratings $C_{a1}, C_{a2}, \ldots, C_{an}$ for the rows with Z_1, Z_2, \ldots, Z_n balls are calculated from the appropriate single row bearing formula in 5.1.1.

Values of f_c for $\frac{D_w}{D_{pw}}$ or $\frac{D_w \cos \alpha}{D_{pw}}$ and/or contact angles other than shown in the table are obtained by linear interpolation or extrapolation.