## INTERNATIONAL **STANDARD**

ISO/IEC 10373-6

> First edition 2001-05-15 **AMENDMENT 4** 2006-06-01

### Identification cards — Test methods —

Part 6:

**Proximity cards** 

AMENDMENT 4: Additional test methods for PCD RF interface and PICC alternating field exposure

iTeh STANDARD PREVIEW
Cartes d'identification — Méthodes d'essai —

S Partie 6: Cartes de proximité

AMENDEMENT 4: Méthodes d'essai additionnelles pour l'interface RF des PCD et l'exposition des PICC au champ alternatif https://standards.iteh.ai/ 221aa98b7f34/iso-iec-10373-6-2001-amd-4-2006



#### PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 10373-6:2001/Amd 4:2006 https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-221aa98b7f34/iso-iec-10373-6-2001-amd-4-2006

#### © ISO/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

#### **Foreword**

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 4 to ISO/IEC 10373-6:2001 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 17, Cards and personal identification.

(standards.iteh.ai)

ISO/IEC 10373-6:2001/Amd 4:2006 https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-221aa98b7f34/iso-iec-10373-6-2001-amd-4-2006

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 10373-6:2001/Amd 4:2006 https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-221aa98b7f34/iso-iec-10373-6-2001-amd-4-2006

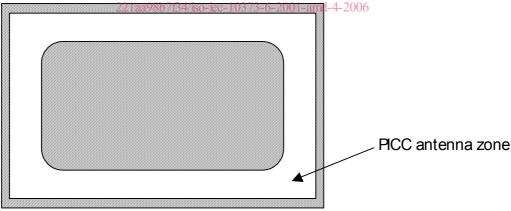
### Identification cards — Test methods —

### Part 6:

## **Proximity cards**

## AMENDMENT 4: Additional test methods for PCD RF interface and PICC alternating field exposure

Page 2, 3.1.2


Replace the term, definition and associated footnote with the following:

#### "Class 1 PICC

PICC whose antenna is located within a zone defined by two rectangles:

- external rectangle: 81 mm × 49 mm, NDARD PREVIEW
- internal rectangle: 64 mm × 34 mm centred in the external rectangle, with 3 mm radius, except for its connection endings.

ISO/IEC 10373-6:2001/Amd 4:2006 https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-



WARNING — The "Class 1" PICC shall also pass the "Class 1" PICC maximum loading effect test defined in 7.4."

#### ISO/IEC 10373-6:2001/Amd.4:2006(E)

Pages 3 and 4, Clause 5

Replace Clause 5 and subclauses 5.1, 5.2 and 5.3 with the following:

#### 5 Physical characteristics tests

#### 5.1 Alternating magnetic field test

The purpose of this test is to check the behaviour of the PICC in relation to alternating magnetic field exposure. Alternating magnetic field shall be tested only at 13,56 MHz. No test is required at other frequencies.

#### 5.1.1 Apparatus

The test PCD assembly shall be used to produce the alternating magnetic field.

#### 5.1.2 Test procedure

The procedure is as follows.

- a) Adjust the RF power delivered by the signal generator to the test PCD antenna to a field strength of 10 A/m rms as measured by the calibration coil.
- b) Place the PICC under test in the DUT position and readjust immediately the RF drive into the test PCD antenna to the required field strength if necessary.
- c) After 5 min, remove the PICC from the DUT position for at least 5 s.1)
- d) Adjust the RF power delivered by the signal generator to 4the 4test (PCD antenna to a field strength of 12 A/m rms as measured by the calibration coil by standards/sist/5569be24-c705-4203-a554-221aa98b7f34/iso-iec-10373-6-2001-amd-4-2006
- e) Place the PICC under test in the DUT position and readjust immediately the RF drive into the test PCD antenna to the required field strength if necessary.
- f) Apply for 5 min an ASK 100 % modulation to this field with the following duty cycle:
  - 5 s at 0 A/m rms;
  - 25 s at 12 A/m rms.
- g) Check that the PICC operates as intended.

#### 5.1.3 Test report

The test report shall state whether or not the PICC operates as intended.

#### 5.2 Alternating electric field test

No test is required.

#### 5.3 Static electricity test

The purpose of this test is to check the behaviour of the card IC in relation to electrostatic discharge (ESD) exposure in the test sample. The PICC under test is exposed to a simulated electrostatic discharge (ESD, human body model) and its basic operation checked following the exposure.

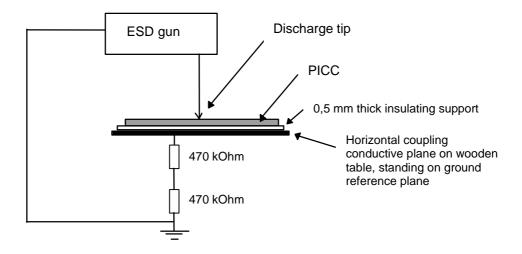



Figure 1 — ESD test circuit

#### 5.3.1 Apparatus

Refer to IEC 61000-4-2:1995.

- a) Main specifications of the ESD generator:
  - energy storage capacitance: 150 pF ± 10 % D PREVIEW
  - discharge resistance: 330 (at an ards.iteh.ai)
  - charging resistance: between 50 MΩ and 100 MΩ; 4:2006

https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-

- rise time: 0,7 ns to 1 <u>ns</u><sub>1aa98b7f34/iso-iec-10373-6-2001-amd-4-2006</sub>
- b) Selected specifications from the optional items:
  - type of equipment: table top equipment;
  - discharge method: direct application of air discharge to the equipment under test;
  - discharge electrodes of the ESD generator: round tip probe of 8 mm diameter.

#### 5.3.2 Test procedure

Connect the ground pin of the apparatus to the conductive plate upon which the PICC is placed.

Apply the discharge successively in normal polarity to each of the 20 test zones shown in Figure 2. Then repeat the same procedure with reversed polarity. Allow a cool-down period between successive pulses of at least 10 s.

WARNING — If the PICC includes contacts, the contacts should face up and the zone which includes contacts should not be exposed to this discharge.

Check that the PICC operates as intended at the end of the test.

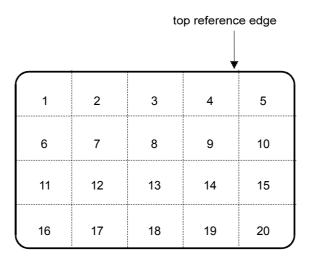



Figure 2 — Test zones on PICC for ESD test

#### 5.3.3 Test report

The test report shall state whether or not the PICC operates as intended.

## 5.4 Static magnetic field test STANDARD PREVIEW (standards.iteh.ai)

No test is required.

Page 7, 6.3

ISO/IEC 10373-6:2001/Amd 4:2006

https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-

Add a new subclause after 6.3.1 and renumber all subsequent subclauses.4-2006

#### "6.3.2 Reference PICC for modulation index and waveform test

The schematic of this Reference PICC is shown in Annex I. This Reference PICC includes a pick up coil with low coupling with the main coil. The pick up coil shall be connected to a high impedance oscilloscope probe. The main coil shall be calibrated with the following procedure.

- a) Calibrate the Test PCD assembly to produce the  $H_{\text{max}}$  operating condition on the calibration coil.
- b) Tune the Reference PICC (Annex I) to 19 MHz:
  - 1) set jumper J1 to position a;
  - 2) drive the calibration coil directly from a signal generator set at 19 MHz;
  - locate the calibration coil and the Reference PICC as close as possible with the axes of the two coils (calibration coil and Reference PICC main coil) being congruent;
  - 4) adjust the Reference PICC capacitor C2 to maximum d.c. voltage at C4;
  - 5) assure final reading of about 6 V (d.c.) at C4 of the Reference PICC by adjusting the generator drive level;
  - 6) re-adjust the Reference PICC capacitor C2 to maximum d.c. voltage at C4, if necessary.

c) Place the Reference PICC into the DUT position on the Test PCD assembly. Set jumper J1 to position b and adjust R2 to obtain 6 V (d.c.) at C4 measured with a high impedance voltmeter. Verify the operating field condition by monitoring the voltage on the calibration coil.

#### WARNING — R2 value should be between 140 $\Omega$ and 180 $\Omega$ .

NOTE 1 The high impedance voltmeter wires should be twisted.

NOTE 2 The high impedance oscilloscope probe ground connection should be as short as possible, less than 20 mm or coaxial connection."

Page 3 of ISO/IEC 10373-6:2001/Amd.2:2003, 7.1.2

Add a warning before step 2:

"WARNING — The PICC load modulation amplitude test should be done by increasing the field strength from 0 A/m, thus checking correct PICC operation starting from  $H_{\min}$ ."

Page 5 of ISO/IEC 10373-6:2001/Amd.2:2003, 7.3.1

Add a warning at the end of the subclause:

"WARNING — The resonance frequency may depend on the field strength used during the measurement."

iTeh STANDARD PREVIEW

Page 5 of ISO/IEC 10373-6:2001/Amd.2:2003; Clause teh.ai)

Add a new subclause 7.4: <u>ISO/IEC 10373-6:2001/Amd 4:2006</u>

https://standards.iteh.ai/catalog/standards/sist/5569be24-c705-4203-a554-

"7.4 "Class 1" PICC maximum loading effect -6-2001-amd-4-2006

#### 7.4.1 Purpose

The following additional PICC test is necessary for interoperability between PCDs and "Class 1" PICCs.

NOTE This test improves interoperability only if the "Class 1" PICCs' antenna size and location are similar to the Reference PICC (Annex D) antenna size and location. For PICCs with different antenna size and/or location other classes may be created with, for each class, a corresponding reference PICC. Next revision of ISO/IEC 14443-1 will include the class(es) definition.

#### 7.4.2 Test procedure

The PICC loading effect at  $H_{\rm min}$  shall be measured using the test PCD assembly. It shall not exceed the loading effect of the reference PICC (Annex D) tuned to 13,56 MHz and calibrated to obtain 6 V (d.c.) at  $H_{\rm min}$ . The procedure of this substitution method is as follows.

- a) Calibrate the Test PCD assembly to produce the  $H_{\min}$  operating condition on the calibration coil.
- b) Tune the Reference PICC (Annex D) to 13,56 MHz:
  - 1) set jumper J1 to position a;
  - 2) drive the calibration coil directly from a signal generator set at 13,56 MHz;
  - 3) locate the calibration coil and the Reference PICC as close as possible with the axes of the two coils being congruent;