INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATIONOMEXDYHAPODHAR OPFAHUSALUUR ПО СТАНДАРТИЗАЦИИOORGANISATION INTERNATIONALE DE NORMALISATION

Surface active agents — Determination of surface tension by drawing up liquid films

Agents de surface — Détermination de la tension superficielle par étirement de films liquides

First edition – 1978-11-01 **iTeh STANDARD PREVIEW** (standards.iteh.ai)

ISO 304:1978 https://standards.iteh.ai/catalog/standards/sist/72bbac5b-9f64-465a-abe3-7bda5b46625b/iso-304-1978

UDC 661.185 : 532.61.08

Ref. No. ISO 304-1978 (E)

Descriptors : surfactants, tests, physical tests, surface tension.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 304 was developed by Technical Committee VIEW ISO/TC 91, Surface active agents, and was circulated to the member bodies in October 1977.

It has been approved by the member bodies of the following countries -

A	https://standards.iteh.ai/ca	talog/standards/sist/72bbac5b-9f64-465a-abe3-
Australia	India 7bd	25b/b6/25b/iso_30/_1078
Austria	Iran	Poland a5b40025b/iso-304-1978 Romania
Belgium	Ireland	South Africa, Rep. of
Brazil	Italy	Spain
Bulgaria	Japan	Switzerland
Egypt, Arab Rep. of	Kenya	Turkey
France	Korea, Rep. of	U.S.S.R.
Germany, F.R.	Mexico	
Hungary	Netherlands	

No member body expressed disapproval of the document.

Surface active agents – Determination of surface tension by drawing up liquid films

0 INTRODUCTION

Surface tension is a fundamental property of liquids in general and aqueous solutions of surface active agents in particular.

The measurement of this characteristic, however, does not allow, in the case of solutions of surface active agents, any suppositions as to their detergency, wetting, foaming, emulsifying activities, etc. Indeed, no connection can be established between the performance properties of the surface active agents and the surface tension of their solutions.

2 REFERENCES

ISO/R 862, Surface active agents - Glossary.

ISO 2456, Surface active agents - Water used as a solvent for tests.¹⁾

3 DEFINITIONS

3.1 free surface energy : See ISO/R 862.

3.2 surface tension : See ISO/R 862.

Teh S NOTE The SI unit of surface tension is the newton per metre

1 SCOPE AND FIELD OF APPLICATION

ds.istedh.al) This International Standard specifies a test method for the determination, by drawing up liquid films, of the

surface tension of aqueous or organic solutions of sufface304:1978

active agents and mixtures containing one or more surface dards / st PBUNC PBLE 64-465a-abe3active agents.

It also applies to the measurement of surface tension of pure liquids or solutions other than those mentioned above.

NOTE - Numerous methods have been established to determine surface tension, such as :

a) methods by drawing up liquid films by a plate, stirrup or rina:

- b) methods for measuring the rise of liquid in a capillary tube;
- c) maximum ball pressure method;
- d) drop weight method;

e) drop or sessile ball method;

f) suspended drop method;

g) dynamic methods based on measurements of flow characteristics;

h) methods which study the waves produced in capillary iets.

The methods based on drawing up liquid films have notable advantages in the simplicity of their procedure and the commercial availability of highly automatic appliances.

7bda5b46625b/iso-Measurement of the maximum force which it is necessary to exert vertically on a stirrup or a ring, in contact with the surface of the liquid being examined placed in a measuring cup, in order to separate it from this surface, or on a plate, with an edge in contact with the surface, in order to draw up the film that has formed.

(N/m). In practice, the submultiple millinewton per metre (mN/m)*

5 APPARATUS

5.1 A tensiometer, which can be fitted with plates, stirrups and rings, and which shall comprise

a) a horizontal platform, which can be moved vertically downwards or upwards by means of a micrometer screw;

b) a dynamometer to give a continuous measure of the force applied to the measuring unit with a precision of at least 0,1 mN/m;

c) a device for indicating or recording the values measured by the dynamometer.

¹⁾ At present at the stage of draft.

 ¹ mN/m = 1 dyn/cm

5.2 A measuring unit, which shall comprise at least one of items a), b) and c) and also item d).

a) A rectangular plate of sheet platinum, 0,1 mm thick and about 30 mm long by 20 mm wide, roughened using emery paper in such a way that the strokes are perpendicular to the side intended to be submerged. The plate is fixed, preferably by welding but alternating by any other means, to a suspension rod situated in the axis of symmetry of the plate (see figure 1).

b) A stirrup of platinum-iridium wire of diameter not exceeding 0,1 mm; the length of the horizontal arms is 20 to 40 mm and the length of the two vertical branches is 10 mm. The ends of these branches terminate in two small platinum balls which act as counterweights (see figure 2).

c) A ring of platinum-iridium wire, 0,3 mm in diameter. The circumference of the ring is generally between 40 and 60 mm. It is fixed to a suspending rod by means of a platinum wire stirrup (see figure 3).

d) A measuring cup, to hold the test portion of the liquid to be examined, consisting of a small glass tank capable of containing a sufficient quantity of liquid. Watch glasses should not be used. **Teh** STAN

In the case of the determination of the surface tension of solutions of surface active agents, cylindrical tanks with a constrained and the apparatus of at least 8 cm may be used. 6.2 Cleaning the apparatus

For determinations on pure liquids, the ideal measuring 180 362 1978 cup is a small tank in the formutof/atarectangularaparalog/standads/sist/2bbacco-9104-405a-abcolelepiped having sides of at least 8 cm; this shape enables/466216/isoils04such8as silicones, which are not removed by the liquid surface to be cleaned completely by wiping.

NOTE – Generally in the case of dilute solutions of surface active agents, the surface should only be wiped if the concentration of the surface active agent is close to the critical concentration for micelle formation (c.m.c.).

6 PROCEDURE

6.1 Preparation of solutions of surface active agents

6.1.1 The solutions for the determinations shall be prepared with all necessary care. The water used for preparing them shall be double distilled water (see 5.2 of ISO 2456) checked by measuring its surface tension. Cork stoppers and, more particularly, rubber stoppers, shall on no account be used, either in the construction of the distillation apparatus or for stoppering containers in which the water is kept.

6.1.2 The temperature of the solutions shall be maintained to within 0.5 °C.

NOTE – Determinations carried out in the region of points of critical solubility, such as the Krafft temperature, cloud temperature of ethylene oxide condensates, etc., are seriously marred by errors. It is preferable to proceed at a temperature higher than that of the particular points, or at a temperature lower than the cloud temperature of ethylene oxide condensates.

6.1.3 As the surface tension of solutions varies with time, it is difficult to recommend a standard ageing period for the solution, because the nature and purity of the surface active agent, its concentration and its liability to adsorption all play a particular part in these variations. It is therefore desirable to make several measurements over a period of time, to construct the surface tension curve as a function of time and to determine the position of the level portion, which gives the age at which the solution has reached its equilibrium state. Automatic apparatus is very suitable for carrying out the measurements, the values being recorded as a function of the time.

6.1.4 The surface of the solutions is extremely sensitive to contamination by atmospheric dust or by vapours from solvents handled in the vicinity. Therefore no volatile products shall be handled in the room where the determinations are made and the complete apparatus shall be protected by a bell of the kind used for balances. These precautions also reduce variation in temperature.

6.1.5 The method recommended for taking the test portion of the liquid examined is to suck it, with a pipette, from the centre of the mass of liquid, as the surface may be liable to soiling by insoluble particles and dust.

62.1 Cleaning the measuring cup ndards/sist/2bbac5b-9164-465a-abc3-21b/isoils/such8as silicones, which are not removed by sulphochromic mixture, phosphoric acid or a solution of potassium persulphate in sulphonic acid, are present, prewash the measuring cup using special products (for example toluene, perchlorethylene or methanolic potassium hydroxide).

If these soils are absent, or after cleaning with these products, wash the measuring cup carefully with hot sulphochromic mixture and then with concentrated phosphoric acid [83 to 98 % (m/m)].

Finally, rinse in double distilled water until neutral.

The double distilled water shall be freshly prepared according to 5.2 of ISO 2456.

Before the determination, the measuring cup shall be rinsed several times with the liquid to be examined.

6.2.2 Cleaning the measuring unit

If necessary, clean the platinum plate, stirrup or ring (5.2) with special products as described in 6.2.1. If the soils requiring cleaning with these products are absent, or after cleaning with these products, wash the platinum measuring unit with hot concentrated sulphuric acid (ρ_{20} 1,839 g/ml) and then rinse with double distilled water until neutral.

Plates shall never be dried by passing through a flame. Avoid touching the measuring units and the inner surface of the measuring cup with the fingers.

6.3 Calibrating the apparatus

6.3.1 Principle

The apparatus is calibrated by adjusting it so that the indications or recordings of the device [5.1 c)] are expressed directly in millinewtons per metre (mN/m).

6.3.1.1 USING A PLATE AS THE MEASURING UNIT

During the determination, the roughened platinum plate, when submerged in the liquid to be examined, is surrounded by a layer of liquid which wets it completely; the system behaves as if the liquid were making tangential contact with a theoretical plate consisting of the plate surrounded by its wetting sheath.

Avoid letting the plate dry completely after cleaning and before submersion in the liquid to be examined.

Because of the system by which the plate is connected to the measuring apparatus, it is easy to drain the plate properly; when the plate is removed from the liquid, one end of its base comes away owing to inevitable lack of symmetry, and leaves one corner immersed. If withdrawal is continued very slowly, the required drainage conditions are obtained, and the plate is removed without bringing away any droplets.

To set the apparatus to zero, it is necessary to proceed (Shorizontal) with the plate completely withdrawn, the plate being

drained as indicated above. Correction for wetting is thus 304:16.4.2 Using a plate as the measuring unit included in the calibration and is not involved in the deterstandards/when bine 5 plate 46as been wetted and the apparatus https://standards.iteh.ai/catalog minations.

6.3.1.2 Using a stirrup as the measuring unit

In order to avoid the correction of buoyancy resulting from the volume of the immersed wire and the two platinum balls, first set the apparatus to zero with the stirrup immersed in a liquid of the same density as the liquid being examined, until its horizontal arm is level with the surface of the liquid.

6.3.1.3 Using a ring as the measuring unit

When using a ring, it is not necessary to make buoyancy corrections.

6.3.2 Calibration procedure

Calibration can be carried out by two methods :

a) by means of riders of known mass, placed on the plate, stirrup or ring. The operation is lengthy, but very accurate.

The instrument reading, indicating the surface tension, γ , in millinewtons per metre, is calculated by the formula

$$\frac{m \times g}{b}$$

where

m is the mass, in grams, of the riders;

b is the perimeter, in metres, of the plate, stirrup or rina:

- g is the acceleration due to gravity; in metres per second squared.
- b) by means of pure substances whose surface tensions are accurately known. This method is quicker.

Adjust the tensiometer, if necessary, using the procedure described in 6.4 until the observed reading agrees with the known value of the calibration liquids.

NOTE - For determinations not requiring very great precision, the tensiometer fitted with the measuring units (plate, stirrup, ring) may be calibrated with pure subtances whose surface tension is known exactly and whose density is similar to that of the liquid to be examined. In these conditions, the relation between the surface tension and the force applied to the dynamometer may be treated as linear.

The values of the surface tension of a number of pure organic liquids are given in annex A.

6.4 Measurement procedure

6.4.1 Levelling the apparatus

Place a liquid level on the platform, and adjust the screws fixed in the base of the apparatus, until the platform is

7bda5b46625b/isocalibrated with the wetting sheath, check that the shorter edges of the plate are horizontal.

> Place the measuring cup containing the liquid to be examined on the platform and bring it under the plate. Raise the platform until the plate is suddenly caught by the liquid. Then gently move the platform, maintaining the equilibrium of the dynamometer, until the base of the plate is at the height of the free surface of the liquid (see figure 4). This process eliminates any error due to buoyancy.

> As immersing the plate in the liquid disturbs the arrangement of the surface layer, wait a few minutes and then determine the force exerted on the dynamometer. Several successive measurements should be made in the same conditions.

> If the measuring instrument is capable of recording the movement/force curve, plot this by gently lowering the platform, the plate at first being immersed for about 15 mm in the liquid. In this way, a curve is obtained which has a slightly sloping straight portion, the slope corresponding to the buoyancy. This curve may provide important information concerning small variations in the surface tension.

6.4.3 Using a stirrup as the measuring unit

With the apparatus calibrated in accordance with 6.3.1.2, check that the arm of the stirrup is horizontal. Place the measuring cup containing the liquid to be examined on the platform and bring it under the stirrup. Raise the platform until the horizontal arm of the stirrup is suddenly caught by the liquid.

Continue raising the platform until the dynamometer is in equilibrium once more.

Lower the platform gently until the dynamometer is slightly out of equilibrium. Then, adjusting the force applied to the dynamometer as well as the position of the platform, restore equilibrium of the dynamometer with the horizontal arm of the stirrup located at the height of the free surface of the liquid. The aim of this operation is to ensure the complete wetting of the arm of the stirrup.

NOTE – Certain commercially available appliances allow the stirrup to be moved vertically while maintaining the position of the platform, as well as the equilibrium position of the balance.

As the contact between the platinum of the stirrup and the surface of the liquid disturbs the arrangement of the surface layer, wait a few minutes before beginning the determination.

Lower the platform using the micrometer screw, maintaining the equilibrium of the dynamometer, either until the "film" linking the horizontal arm of the stirrup and the surface of the liquid breaks of until the lower meniscus of the "film" separates from the horizontal arm of the stirrup. Carefully note the force applied at the moment of breaking.

7.1.2 Using a stirrup as the measuring unit

The surface tension, γ , in millinewtons per metre, is given by the formula

$$\frac{F}{b'}$$

where

F' is the force, in millinewtons, applied to the dynamometer at the moment of breaking of the "film" linking the arm of the stirrup and the surface of the liquid, or of separation of the lower meniscus of the "film";

b' is the perimeter, in metres, of the horizontal arm of the stirrup.

7.1.3 Using a ring as the measuring unit

The surface tension, γ , in millinewtons per metre, is given by the formula

DARD PREVIEW

F'' is the force, in millinewtons, applied to the dyna-ISO 304 momenter at the moment of breaking of the "film"

Check that the circumference of the ring is horizontal. Use the surface of the liquid as a mirror, observing the image of the ring almost in contact with the surface of the liquid.

NOTE – If the surface of the liquid does not give a sufficiently clear image, use a mirror placed on the platform, the mirror having been made horizontal with the help of a liquid level.

Follow the same procedure as that described in 6.4.3 for the stirrup.

7 EXPRESSION OF RESULTS

7.1 Method of calculation

7.1.1 Using a plate as the measuring unit

The surface tension, γ , in millinewtons per metre, is given by the formula

 $\frac{F}{b}$

where

F is the force, in millinewtons, applied to the dynamometer when the base of the plate is level with the free surface of the liquid;

b is the perimeter, in metres, of the plate.

r is the radius, in metres, of the ring;

f is a correction factor taking into account the directions in which the surface forces act on the ring at the moment immediately preceding breaking of the "film" or separation of the lower meniscus of the "film", as there is not perfect symmetry between the menisci of the inner and outer parts of the ring (see figure 5).

NOTE – The value of f depends on the radius of the ring, the thickness of the platinum wire of which it is made, the density of the liquid to be examined and the volume of the liquid raised above the free surface at the moment immediately preceding breaking of the "film" or separation of the lower meniscus of the "film". Bibliographical references on this subject are included in annex B.

7.2 Precision

The accuracy of determination of the surface tension will vary considerably depending on the nature of the liquid to be examined and on its wetting power towards platinum.

In the case of a *physically pure* liquid capable of wetting platinum completely, the precision is 0,1 mN/m. For the purposes of this International Standard, a *physically pure* liquid is a liquid the surface of which, particularly, is free from any foreign matter capable of affecting the surface properties.

8 TEST REPORT

The test report shall include the following information :

a) all information necessary for the complete identification of the product to be examined, as well as of its sampling, and in the case of solutions of surface active agents : critical solubility temperatures, such as the Krafft temperature, cloud temperature of ethylene oxide condensates, etc.;

b) the reference of the method used (reference to this International Standard) including the measuring unit used : plate, stirrup or ring; and diameter of the measuring cup; c) the nature of the water used, or nature of the solvent used, and the concentration of the solutions;

d) the temperature of the determination;

e) age of the solution at the time of the determination, i.e. the time which has elapsed between the preparation of the solution and the determination;

f) variation of the surface tension with time, until equilibrium is reached;

g) the results and the method of expression used;

h) any operational details not specified in this International Standard, or which are optional, as well as any incidents liable to have affected the results.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 304:1978 https://standards.iteh.ai/catalog/standards/sist/72bbac5b-9f64-465a-abe3-7bda5b46625b/iso-304-1978

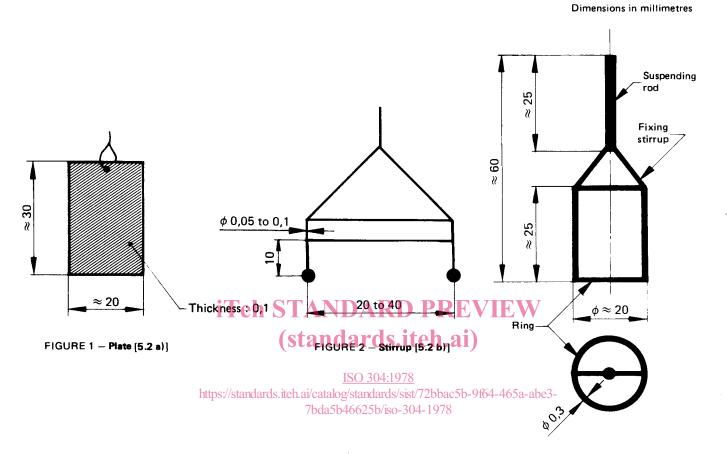


FIGURE 3 - Ring [5.2 c)]

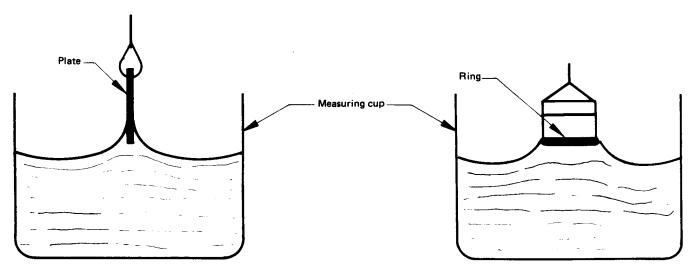


FIGURE 4 - Measurement using a plate

FIGURE 5 - Measurement using a ring

ANNEX A

VALUES OF THE SURFACE TENSION, AT 20 °C AND IN RELATION TO AIR, OF PURE ORGANIC LIQUIDS

	Surface tension	Density at 20 $^\circ$ C	Boiling point
Liquid	mN/m	g/ml	°C
Glycerol	63,4	1,260	290
Methylene diiodide (diiodomethane)	50,76	3,325	180
Quinoline	45,0	1,095	237
Benzaldehyde	40,04	1,050	179
Bromobenzene	36,5	1,499	155
Ethyl acetoacetate	32,51	1,025	180
o-Xylene	30,10	0,880	144
Octan-1-ol [n-Octyl alcohol]	27,53	0,825	195
Butan-1-ol [n-Butyl alcohol]	24,6	0,810	117
Propan-2-ol	21,7	0,785	82,3

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 304:1978 https://standards.iteh.ai/catalog/standards/s8t/72bbac5b-9f64-465a-abe3-7bda5b46625b/iso-304-1978

BIBLIOGRAPHY

For information concerning the correction factor, f, in the formula for the calculation of surface tension in the case where the ring is used (see 7.1.3), one may consult :

[1] HARKINS, W. D., and JORDAN, H. F., "A method for the determination of surface and interfacial tension from the maximum pull on a ring", J. Am. Chem. Soc. 52 (1930), pp. 1751-1772.

[2] FOX, H. W., and CHRISMAN, C. H., Jr., "The ring method of measuring surface tension for liquids of high density and low surface tension, J. Phys. Chem. 56 (1952), p. 284.

Apparatus using a plate :

[3] DOGNON, A., and ABRIBAT, M., Compt. Rend. Acad. Sc. Paris 208 (1939), p. 1881.

[4] SCHWUGER, M. J., and ROSTEK, H. M., Chemie-Ing. Techn. 43 (1971), p. 1075.