

ETSI GS NFV-INF 007 V1.1.1 (2014-10)

Network Functions Virtualisation (NFV);
Infrastructure;

Methodology to describe Interfaces and Abstractions

Disclaimer

This document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

��8b���L>j����W���
�Ay;B�B�'���+�5����r���;US���h��?�6��ʢ�=�)<�eeۛ0E��Ҏp�y�0���:&������|�2��m�h����|�Ub*j���1����

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 2

Reference
DGS/NFV-INF007

Keywords
interface, NFV

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

���3��O�N[VI�[C|���᨜�3���q���Uxb�*�Ԅ�����/D#����^38��^������(�+���'H������B5��ɵS�������)M֮˞�P�B�����uh�آ�`_�/�ʣ�

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definitions and abbreviations ... 5

3.1 Definitions .. 5

3.2 Abbreviations ... 6

4 Objectives ... 6

4.1 Requirements .. 7

4.2 Standardizing Organizations .. 7

5 Architectural Principles w.r.t. Interfaces and Abstractions .. 7

5.1 System Composition using Functional Blocks ... 8

5.1.1 Functional Blocks as the Primary Specification Method .. 8

5.1.2 Interconnection of Functional Blocks ... 9

5.1.3 Recursive Structure of Functional Blocks .. 9

5.1.4 General UML Diagram for Basic Functional Block Methodology ... 10

5.2 Extension of Functional Block Methodology to Virtualisation .. 11

5.2.1 Virtualisation: Virtual Interfaces and Container Interfaces .. 12

5.2.2 Virtual Functions and Host Functions .. 13

5.2.3 Recursive Virtualisation ... 14

5.2.4 Configuration Lifespan, Operational Interfaces and Configuration Interfaces ... 15

5.2.5 Mapping Between VFBs and HFBs .. 15

5.2.6 General UML Diagram for Extended Functional Block Methodology .. 16

5.3 Describing and Specifying Interfaces and Abstractions ... 18

5.3.1 Functional Blocks, Components, Abstractions and Interfaces .. 18

5.3.2 Specifying Organizations and Level of Detail .. 18

5.4 Types of Interfaces ... 18

5.5 Interface Adaptation Mechanisms .. 19

5.6 Naming and Versioning .. 22

5.7 Discovery of Initiators / Targets and Bootstrapping ... 22

5.8 Security .. 22

5.9 Performance and Availability ... 23

5.10 Error and Anomaly Handling ... 23

5.11 Platform Independence and Portability .. 23

5.12 Level of Abstraction and Granularity of Interfaces .. 24

6 Illustrative Examples .. 24

Annex A (informative): Additional Potential Illustrative Examples ... 27

Annex B (informative): Authors & contributors ... 29

History .. 30

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

����d�3�I}���G�r�n�����ٶ�|�����7I�:���r$�����p	�`����g#�M1��J]�	����>�:)�����
�ڥ��5�uz�o|��u�����@2�9X�����X�H���z

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will",
"will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms
for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

����-*��ݑ�w�b�_Y�]H��P��H�|���vA��n�/��aba@��P�ۭ(>�i2���uls�+"��12)x�i���3j�3t���f�W����u
����\�x-�3=Trn�OS0"�����

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 5

1 Scope
The present document describes how Network Functions Virtualisation (NFV) related interfaces and abstractions are to
be derived and specified. It describes the concepts associated with these interfaces and abstractions. It covers the
specification process / methodology in general. It presents a cross-cutting framework which covers compute, hypervisor
and infrastructure network domains, also data, control and management planes.

The present document does not specify all the interfaces and abstractions as these are covered by other documents, e.g.
the NFV INF domain specific documents. Examples of interfaces and abstractions are nevertheless supplied to illustrate
the methodology.

The present document does not provide any detailed specification but makes reference to specifications developed by
other bodies and to potential specifications, which, in the opinion of the NFV ISG could be usefully developed by an
appropriate standards development organization (SDO). Furthermore the NFV INF domain specific documents will not
provide detailed specifications either.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

unicode: unique, unified and universal encoding

zeroconf: zero configuration networking

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

;��vC4��ޕd�V��Υ�+��\���.:��t�Cz�Z���#��(��)�
����=����.�g���[������~�I�0�������Ӄ���P������C"�hD[��#�J2���]��9�Ŷd�

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 6

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

3GPP 3rd Generation Partnership Project
ACL Access Control List
API Application Programming Interface
CLR Common Language Runtime
CPU Central Processing Unit
EJB Enterprise JavaBeans
ETSI European Telecommunications Standards Institute
GS Group Specification
HFB Host Functional Block
IETF Internet Engineering Task Force
ISG Industry Specification Group
IT Information Technology
ITU-T International Telecommunication Union Telecommunication Standardization Sector
JIT Just In Time
JSON JavaScript Object Notation
MANO Management and Orchestration
NFV Network Functions Virtualisation
NIC Network Interface Card
NPU Network Processing Unit
OS Operating System
OVS Open Virtual Switch
OVSDB Open Virtual Switch Database
SATA Serial Advanced Technology Attachment
SDN Software Defined Networking
SDO Standards Development Organization
SR-IOV Single Root I/O Virtualisation
SSL Secure Sockets Layer
TCP Transmission Control Protocol
UML Unified Modelling Language
UTF Unicode Transformation Format
VF Virtual Function
VFB Virtualised Functional Block
VM Virtual Machine
VNF Virtual Network Function
VNIC Virtual Network Interface Card
VT Virtualisation Technology
XML eXtensible Markup Language

4 Objectives
The three key features of the NFV approach are:

1) Separation of the software defining the network function from generic high volume hardware servers, storage
devices and network switches.

2) Independent modularity of the software and hardware components.

3) Automated orchestration which will automate remote installation and management of the virtual functions on
the generic hardware.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

�SY�����|�E�뽎�&�&pj��2(�r0�p�W��d��q��JF���o��\��>�A���j�;�U��/ͬ/es�g����z�;=�c�B��KMbLQ�����р[�&�����By��+Vws�

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 7

4.1 Requirements
The overall vision of Network Functions Virtualisation gives rise to the following overall requirements w.r.t. interfaces
and abstractions:

• Each functional block or component shall be described as an abstraction, documenting the purpose and
behaviour of the functional block or component, and as a set of interfaces to the abstraction.

• The interfaces and abstractions shall be documented at a sufficiently detailed level to permit standardizing
organizations to create specifications for these interfaces and abstractions.

• The NFV ISG is expected to liaise with standardizing organizations in order to ensure that such specifications
are sufficiently detailed to enable interoperability between platforms and devices hosting Virtualised Network
Functions that are offered by different vendors.

• The NFV ISG is expected to liaise with standardizing organizations in order to ensure that such specifications
are decoupled from vendor-specific design and implementation choices within platforms and devices hosting
Virtualised Network Functions.

4.2 Standardizing Organizations
The standardizing organizations that are responsible for creating detailed specifications of each interface and abstraction
are listed in the overview document and in domain specific documents.

Other organizations that define methodologies relevant to interfaces and abstractions include the Object Management
Group (specifically for UML) and the International Council on Systems Engineering (specifically for Systems
Engineering).

5 Architectural Principles w.r.t. Interfaces and
Abstractions

Many network systems, including those specified by 3GPP, IETF, and ITU-T, are specified using the principles of
systems engineering. Each component of the overall system is specified as a functional block and the interactions
between the functional blocks are specified as interfaces.

This clause details the basic functional block based system composition methodology and extends it to cover the
process of virtualisation.

The representation of functional blocks is part of the working methods of many industries as well as different
disciplines and perspectives within those industries. As a result, there is not a clear common representation of functional
blocks which is unambiguous across different industries, disciplines, and perspectives.

As tools that describe functional blocks are most often used by engineers for the design, development and construction
of functional blocks, quite naturally, many tools give considerable emphasis to these phases of the functional block life
cycle. For example, in the construction phase, the reuse of common design features is especially important as reuse
increases efficiency. Many tools therefore give considerable emphasis to the reuse of such features. In this case
classification of functional blocks according to common design features is of considerable value and the natural starting
point for describing functional blocks is the class. It is natural to start by representing a class of functional blocks which
can be built using the same design. The class diagram can also contain hierarchy, for example an inheritance hierarchy,
which can show increasing scope of design reuse at higher levels of the class hierarchy.

However, when describing the operation of functional blocks, the individual instances of functional blocks and the way
individual functional blocks interact with each other are important. In this case the natural starting point is not the class
but the individual instances. Classification and hierarchy of classification is much less relevant at the operations stage.
More important is the way individual functional block instances are interconnected and interact.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

�ϕ{X�����n�������9��3%��F���R녾��5����_�B�")���2��4�?�t-ү��G8���v"H���e��U�a�Rɶ�x:uM�[��(�kI3̈��̗��l���i��'��.>��

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 8

There are of course many other aspects to functional blocks which may be important to represent in different way. For
example the nature of what is passed between functional blocks may be important to differentiate. In all information and
network systems, it is information that is passed between the functional blocks. However, even in this narrow category,
in may be important to distinguish a continuous flow of information from discrete events. More general systems may
pass fluid (pressure and flow), electricity (voltage and current), rotation (revs and torque), money, etc.

The present document is concerned with the basic characteristics of information functional blocks. We can assume that
all the parameters passed between functional blocks are information of one form or another.

This clause considers some of the basic properties of information functional blocks. It focuses on the case where a
functional block such as a server or a network acts as a host functional block, hosting virtual functional blocks such as
virtual machines and virtual networks.

In this case, it is important to highlight the properties of functional blocks in operation and so all the discussion and
diagrams in the present document show functional block instances (and not classes of functional blocks) unless
otherwise stated.

5.1 System Composition using Functional Blocks

5.1.1 Functional Blocks as the Primary Specification Method

The great majority of specification of telecommunications systems specifies functional blocks using the methodology of
systems engineering. A functional block is the basic unit of a system and its specification can and should be precise.

A functional block, that is a single functional block instance, consists of:

• A set of input interfaces.

• State.

• A transfer function.

• A set of output interfaces.

When describing practical functional blocks, the interfaces may be described such that an input interface is paired with
an output interface. This is normally convenient when describing the interconnection between functional blocks.

When considering the functional block at its most fundamental level, the proper operation of a functional block is causal
and the flow of causality from input to output is central to the methodology. In this case is normally more convenient to
consider all input as separate from all outputs. A fundamental view of a functional block illustrated in Figure 1.

Figure 1: The fundamentals of a functional block

There a number of fundamental properties of functional blocks:

• The transfer function is fixed and defining of the functional block.

• The set of all possible values of state is fixed and is defining of the functional block.

• The set of all possible input values is fixed and is defining of the functional block.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

7^>�t���vR��x��o����E:�!��[{���U���0���I�b�A���U�]"���f1W8��k*�Qq��pK���#k�ޗ�6v,ۨ��[�
��5�٢/�[����c�2����t�P��y��2�

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 9

• The set of all possible output values is fixed and is defining of the functional block.

• The transfer function is the set of mapping from a specific value of tuples of input and state to a specific value
of tuple of output and state.

• The state is the ability of the evolution of the functional block to be dependent on historic inputs and not just
on the current input.

• The process of acquiring the current input value, the current state value, calculating the transfer function
mapping, and setting the next state value and the next output value takes a finite amount of time.

• The exact amount of time may vary with each specific mapping.

A central property of functional blocks is the complete and formal separation of the static from the dynamic. Using a
more IT oriented terminology, the input, output, and internal (i.e. state) data structures and all the methods (i.e. the
transfer function) and static. They shall not change. Only the values of data within the data structures can change; these
values are the only things which are dynamic.

For standardized functional blocks, in order to ensure proper interoperability, the goal would normally be to fully define
all the static parameters of the functional block in the standard.

5.1.2 Interconnection of Functional Blocks

Having defined what a functional block is from the inside, the next fundamental property of a functional block the
ability to interconnect functional blocks. This is achieved by connecting an output interface of one functional block with
the input interface of another functional block. For this to work the following shall be true.

• The data structure of the output interface of the functional block on side of the interconnection shall be
compatible with the data structure input interface of the functional block on the other side of the
interconnection. The output set of values shall a subset of the input set of values.

This interconnection of interfaces is called an interface binding. This arrangement is illustrated in Figure 2.

Figure 2: Interconnection of functional block with interface bindings

As illustrated in Figure 2, when a number of functional blocks are interconnected all together, the interface bindings
form a topology between the functional blocks.

5.1.3 Recursive Structure of Functional Blocks

When a number of functional block are interconnected in a topology, some input interfaces and some output interfaces
remain. A fundamental property of the functional block methodology is that the entity as viewed through these
remaining input and output interfaces is also a functional block and meets all the properties of a single functional block.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

�S�A"�6T��c�]�~}`%r~s���'��С��͒�od8�h�a��M3��7���+��q�OV����.��)��M�蜀[�ez�d���k��M�a<��cS+����4���+�1���5🦞�

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 10

This is illustrated in Figure 3.

Figure 3: Recursive property of functional blocks

This means that functional blocks have a fundamental recursive property. A larger functional block can be created by
aggregating a number of a smaller functional block and interconnecting them with a specific topology.

Another fundamental property of functional blocks which is immediately apparent from this recursive property is that
functional blocks are inherently parallel, concurrent, and asynchronous. Any sequential and synchronous properties will
arise only as a special case, normally by imposing explicit design constrains on the static properties of all the
constituent functional blocks.

5.1.4 General UML Diagram for Basic Functional Block Methodology

It is possible to summarize the basic entities of the functional block methodology using a UML class diagram. UML
class diagrams show classes, that is, sets of things which all have the same property. Most often classes in UML class
diagrams are there to define the construction of members, often called instances, of the class. In this way, members of
the class have the same properties because the class definition from the class diagram is used directly to create the
instances. However, the class can also be used to categorize things even if they were not created directly by the
specification. They can be classified in retrospect, rather by design.

The ability to classify in retrospect is important for many aspects of practical systems. Generally component functional
blocks are designed, built, and made operational at different times and often it is not possible to change existing
functional blocks when introducing new components. The UML diagrams used here show general classification, and
instances of functional block classes may be classified as instances of the classes in the diagram after they have been
designed, built, and made operational.

UML class diagrams show classes and relationships between classes. A relationship is shown between two classes. Two
completely different type of relationship are as follows.

• Generalization (also called inheritance). This relationship shows that two classifications are different
viewpoints of the same thing. The instances of the classes are the same instances. The relationship is often
referred to as an 'is a' relationship. In UML, generalization is shown by an open triangular arrowhead

• Associations. These are relationship between two separate instances which interact with each other. UML
allows three different strengths of association:

- Association. General interaction between instances.

- Aggregation. An association where the instance on one class is a component part of an instance of the
other class.

- Composition. An aggregation where the existence of the component instance depends on the existence of
the aggregate instance.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

�$�@���x�V>y/����>�d���T�a_�b��e��h��6R����'M�=�c2Ov��Um�����ydC�sL�Jk����6��P�"���"�dB`�aWt5����3�c_���B5w���pA��F�Q2Z

ETSI

ETSI GS NFV-INF 007 V1.1.1 (2014-10) 11

Figure 4: UML class diagram of functional blocks

Figure 4 shows a UML class diagram of functional blocks (note the functional block class is called virtual function for
consistency with the following clause). The diagram specifies the three basic parts of a functional block (transfer
function, state, interfaces), the ability to bind interfaces, as well as the property of recursive composition. Note that this
use of composition is different to the UML definition.

5.2 Extension of Functional Block Methodology to Virtualisation
Functional block methodology does not anticipate or direct support virtualisation. However, the foundations of the
methodology are very general and mathematically robust. It is still possible therefore to understand virtualisation in
terms of functional blocks. This clause develops the extension of the methodology in terms which are still fully based
on the same general, mathematical principles and so still retains the formal robustness of the methodology.

In summary, the essence of virtualisation is to revisit the boundary between the static and dynamic parts of the
functional block specification. We will see that virtualisation uses a process with the following steps:

• A host function has some dynamic state which can be set to a value (configured) and held constant for a
prescribed period of time (which will be the lifetime of the virtualised function).

• This configuration allows the host to appear to operate according to the specification of the virtualised
function - this configuration of the host implements the virtualised function.

In fact, it is the case that all implementation is exactly this process. It is indeed, this mechanism of virtualisation that
allows any implementer freedom to choose and optimize their own implementation of the virtual function. Moreover,
all implementation independent specification is a specification of a virtual function.

basic functional blockpackage Data[]

Functional Block

Interface Binding

Output InterfaceInput Interface

Interface

Transfer
Function

State

2

1

1

1

1

1

1..*

1

Component List

Component List

1

1..*
Binding List Binding List

1..*

1

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/6b
d4a

e8
a-

37
4a

-46
cc-

90
1a

-81
9c

7b
0f3

08
b/et

si-
gs-

nfv-
inf-0

07
-v1

.1.
1-

20
14

-10

��/v�$�{�zE �8r����@7��YA=m��1��*�{lWY
y|j"����t�C�o���:��ʭ����pj�������'���uj�m���c��Q�3���\���+XU�o&����)�n�~l��\��

