INTERNATIONAL STANDARD

Paints and varnishes - Determination of release rate of biocides from antifouling paints -

Part 1:
 General method for extraction of biocides

iTeln STPeintures et vernis PDetermination dutaux de lixiviation des biocides contenus dans les peintures antisalissures -
(Stpartie 1? Méthode gener rale dextraction des biocides
ISO 15181-1:2007
https://standards.iteh.ai/catalog/standards/sist/20df7517-dd2f-4da9-918d-
a6c26f402fc9/iso-15181-1-2007

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15181-1:2007
https://standards.iteh.ai/catalog/standards/sist/20df7517-dd2f-4da9-918d-a6c26f402fc9/iso-15181-1-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
Contents Page
Foreword iv
Introduction V
1 Scope 1
2 Normative references 1
3 Principle 2
4 Required supplementary information 2
5 Apparatus 2
6 Reagents and materials 4
7 Sampling 5
8 Preparation of test cylinders 5
$9 \quad$ Procedure 6
10 Extraction method 6
11 Test report 7
Annex A (normative) Supplementary information.s.ite.t.ani.) 8
Bibliography 9

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15181-1 was prepared by Technical Committee ISO/TC 35, Paints and varnishes, Subcommittee SC 9, General test methods for paints and varnishes.

This second edition cancels and replaces the first edition (ISO 15181-1:2000), which has been technically revised, in particular to extend the use of the general extractionimethodtto the later parts of ISO 15181.

ISO 15181 consists of the following parts, under the general title Paints and varnishes - Determination of release rate of biocides from antifouling paints:
https $/ /$ standards.iteh.ai/catalog/standards/sist/20df7517-dd2f-4da9-918d-

- Part 1: General method for extraction of biocides ${ }^{\text {fc9/iso-15181-1-2007 }}$
- Part 2: Determination of copper-ion concentration in the extract and calculation of the release rate
- Part 3: Calculation of the zinc ethylene-bis(dithiocarbamate) (zineb) release rate by determination of the concentration of ethylenethiourea in the extract
- Part 4: Determination of pyridine-triphenylborane (PTPB) concentration in the extract and calculation of the release rate
- Part 5: Calculation of the tolylfluanid and dichlofluanid release rate by determination of the concentration of dimethyltolylsulfamide (DMST) and dimethylphenylsulfamide (DMSA) in the extract

Introduction

By using standard conditions of temperature, salinity and pH at low biocide concentrations in the surrounding artificial seawater, a repeatable value of the release rate under the specified laboratory conditions can be determined using the method given in this part of ISO 15181, which can be used for quality assurance and material selection purposes. The actual release rate of biocides from antifouling paints on ships' hulls into the environment will, however, depend on many factors, such as ship operating schedules, length of service, berthing conditions, paint condition, as well as the temperature, salinity, pH , pollutants and biological community in a particular area.

The results of this test do not reflect environmental biocide release rates for antifouling products and are not suitable for direct use in the process of generating environmental-risk assessments, producing environmentalloading estimates or for establishing release rate limits for regulatory purposes. In comparison with copper and organotin release rates obtained either by direct or indirect measurements of the copper release rate from ships' hulls and from measurements made on panels exposed in harbours, all available data indicate that the results obtained using this generic test method significantly overestimate the release rates of biocides under in-service conditions. Published results demonstrate that the results of this test method are generally higher than direct in situ measurements of copper and organotin release rates from in-service ship hulls by a factor of about 10 or more for several commercial antifouling coatings ${ }^{[1,2]}$. A similar relationship is expected to be found for other biocides. Realistic estimates of the biocide release rate from a ship's hull under in-service conditions can only be obtained from this test method if this difference is taken into account.

Where the results of this test method are used in the process of generating environmental-risk assessments, producing environmental-loading estimates or for regulatory purposes, it is most strongly recommended that the relationship between laboratory release rates and actual environmental inputs be taken into account to allow a more accurate estimate of the biocide release rate from antifouling coatings under real-life conditions to be obtained. This cansbe accomplished through the application of appropriatecorrection factors ${ }^{[2]}$.
a6c26f402fc9/iso-15181-1-2007

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15181-1:2007
https://standards.iteh.ai/catalog/standards/sist/20df7517-dd2f-4da9-918d-a6c264402fc9/iso-15181-1-2007

Paints and varnishes - Determination of release rate of biocides from antifouling paints -

Part 1:
 General method for extraction of biocides

1 Scope

This part of ISO 15181 specifies a general method for extracting biocides from antifouling paint films into artificial seawater under specified laboratory conditions. It is used in conjunction with the other parts of ISO 15181 to determine the amounts of specific biocides in the extract, for example copper and/or certain organic biocides, and to enable the release rate of those biocides from the paint film under the specified laboratory conditions to be calculated.

2 Normative references STANDARID PREVIIEW

The following referenced documents are indispensåble for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. 15181-1:2007
https.//standards.iteh.ai/catalog/standards/sist/20df7517-dd2f-4da9-918d-
ISO 1513, Paints and varnishes - Examinationand preparation of samples for testing
ISO 2808, Paints and varnishes — Determination of film thickness
ISO 3696, Water for analytical laboratory use - Specification and test methods
ISO 15181-2, Paints and varnishes - Determination of release rate of biocides from antifouling paints Part 2: Determination of copper-ion concentration in the extract and calculation of the release rate

ISO 15181-3, Paints and varnishes - Determination of release rate of biocides from antifouling paints Part 3: Calculation of the zinc ethylene-bis(dithiocarbamate) (zineb) release rate by determination of the concentration of ethylenethiourea in the extract

ISO 15181-4, Paints and varnishes - Determination of release rate of biocides from antifouling paints Part 4: Determination of pyridine-triphenylborane (PTPB) concentration in the extract and calculation of the release rate

ISO 15181-5, Paints and varnishes - Determination of release rate of biocides from antifouling paints Part 5: Calculation of the tolylfluanid and dichlofluanid release rate by determination of the concentration of dimethyltolylsulfamide (DMST) and dimethylphenylsulfamide (DMSA) in the extract

ISO 15528, Paints, varnishes and raw materials for paints and varnishes - Sampling
ASTM D 1141-98(2003), Standard Practice for the Preparation of Substitute Ocean Water

3 Principle

Test cylinders painted with antifouling paint are immersed, together with reference cylinders, in flowing artificial seawater in a holding tank. At specified time intervals, the cylinders are removed and exposed for a defined period in individual release rate measuring containers containing the same artificial seawater before being replaced in the holding tank. The concentration of the biocide released into the water of the individual release rate measuring containers is then determined. This operation is repeated at defined time intervals and hence the release rate of the biocide under the specified laboratory conditions can be calculated.

4 Required supplementary information

For each application, the items of supplementary information listed in Annex A shall be supplied as appropriate to enable the test method given in this part of ISO 15181 to be carried out.

5 Apparatus

NOTE Some biocides have a strong tendency to adsorb onto certain glass or plastic substrates.
5.1 Test cylinder, made of an inert material [see Annex A, item A. 2 a)], having a diameter of $(64 \pm 5) \mathrm{mm}$ and length of $(178 \pm 15) \mathrm{mm}$, and closed at both ends so that it is watertight.
5.2 Rotating device, capable of rotating a test cylinder (5.1) in the centre of the release rate measuring container (5.3) such that the rotational speed of the outside of the test cylinder through the artificial seawater is $(60 \pm 5) \mathrm{r} / \mathrm{min}[(0,2 \pm 0,02) \mathrm{m} / \mathrm{s}]$. The device itself shall not be allowed to come into contact with the artificial seawater.
(standards.iteh.ail)
5.3 Release rate measuring container (see Figure 1) ${ }_{2}$ made of an inert material [see Annex A, item A. 2 b)], of nominal capacity ($2 \pm 0,2$) litres, 120 mm to 150 mm in diameter and 170 mm to 210 mm high. The container shall be fitted with three evenly spaced baffles around the inside of the container to prevent swirling during test cylinder rotation. The baffles shall consist of circular rods of diameter 5 mm to 7 mm running from the bottom of the container to a level at least above that of the artificial seawater. They shall be fixed in place using an inert adhesive or solvent. There shall be a means of maintaining the container and its contents at $(25 \pm 1)^{\circ} \mathrm{C}$.

NOTE Placing the container in a thermostatically controlled water bath has been found to be a suitable means of maintaining the temperature at the correct level; alternatively, the test may be performed in a conditioned room at the specified temperature.

If the release rate of a highly photosensitive biocide is being determined, then the container shall be protected from natural and artificial visible-light sources. Details of this requirement to protect the container from light are indicated in the part of this standard relating to determination of the release rate of that biocide.

Key
ISO 15181-1:2007
release rate measuring containe
6c26f402fc9/iso-15181-1-2007
capacity: 1,8 litres to 2,2 litres
diameter $(A): 120 \mathrm{~mm}$ to 150 mm
height (B): 170 mm to 210 mm
baffles (C): three circular-cross-section rods of diameter 5 mm to 7 mm
2 test cylinder
diameter (D) : 59 mm to 69 mm
paint-free zone (E): 10 mm to 20 mm
3 painted zone

Figure 1 - Release rate measuring container and test cylinder
5.4 Holding tank, made of an inert material (polycarbonate has been found suitable) of such dimensions as to permit the immersion of at least four test cylinders.

The tank shall be equipped with a system to circulate the artificial seawater continuously through a filter/pump unit [see Annex A, item A. 2 c)] so that the concentration of the biocide remains below the specified limit [see Annex A, item A. 2 d)] for the duration of the test [see Annex A, item A. 2 e)]. To achieve the required flow rates and maintain a low biocide level in the holding tank, it might be necessary to have more than one pump/filter unit. It is recommended that the capacity of the filter units be selected so that they require regeneration or replacement no more frequently than once every 30 days.

