TECHNICAL SPECIFICATION

ISO/TS 16610-40

First edition 2006-11-01

Geometrical product specifications (GPS) — Filtration —

Part 40: Morphological profile filters: Basic concepts

iTeh STANDARD PREVIEW Spécification géométrique des produits (GPS) — Filtrage — Specification géométrique des produits (GPS) — Filtrage —

<u>ISO/TS 16610-40:2006</u> https://standards.iteh.ai/catalog/standards/sist/f422a14c-a389-43b7-96ea-187098db9756/iso-ts-16610-40-2006

Reference number ISO/TS 16610-40:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 16610-40:2006</u> https://standards.iteh.ai/catalog/standards/sist/f422a14c-a389-43b7-96ea-187098db9756/iso-ts-16610-40-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forew	ord	iv
Introdu	uction	vi
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4 4.1 4.2	Basic concepts Minkowski sums Morphological operations	
5 5.1 5.2	Morphological filters General Fill transform Discrete morphological filters	7 7 7
5.4 5.5	Envelope filters	
Annex Annex Annex	A (informative) Concept diagram	13 14 15
Biblio	graphy <u>ISO/TS-16610-40:2006</u> https://standards.iteh.ai/catalog/standards/sist/f422a14c-a389-43b7-96ea- 187098db9756/iso-ts-16610-40-2006	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a technical committee may decide to publish other types of normative document:

- an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in an ISO working group and is accepted for publication if it is approved by more than 50 % of the members of the parent committee casting a vote; TANDARD PREVIEW
- an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting a vote.

ISO/TS 16610-40:2006

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a further three years, revised to become an international Standard, or withdrawn. If the ISO/PAS or ISO/TS is confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TS 16610-40 was prepared by Technical Committee ISO/TC 213, *Dimensional and geometrical product specifications and verification*.

ISO/TS 16610 consists of the following parts, under the general title *Geometrical product specifications* (*GPS*) — *Filtration*:

- Part 1: Overview and basic concepts
- Part 20: Linear profile filters: Basic concepts
- Part 22: Linear profile filters: Spline filters
- Part 29: Linear profile filters: Spline wavelets
- Part 31: Robust profile filters: Gaussian regression filters
- Part 32: Robust profile filters: Spline filters
- Part 40: Morphological profile filters: Basic concepts

- Part 41: Morphological profile filters: Disk and horizontal line-segment filters
- Part 49: Morphological profile filters: Scale space techniques

The following parts are under preparation:

- Part 21: Linear profile filters: Gaussian filters
- Part 26: Linear profile filters: Filtration on nominally orthogonal grid planar data sets
- Part 27: Linear profile filters: Filtration on nominally orthogonal grid cylindrical data sets
- Part 30: Robust profile filters: Basic concepts
- Part 42: Morphological profile filters: Motif filters
- Part 60: Linear areal filters: Basic concepts
- Part 61: Linear areal filters: Gaussian filters
- Part 62: Linear areal filters: Spline filters
- Part 69: Linear areal filters: Spline wavelets
- Part 70: Robust areal filters: Basic concepts A RD PREVIEW
- Part 71: Robust areal filters: Gaussian regression filtersh.ai)
- Part 72: Robust areal filters: Spline filters 16610-40:2006
- atalog/standards/sist/f422a14c-a389-43b7-96eaandar eh.ai - Part 80: Morphological areal filters; Basic concepts 6610-40-2006
- Part 81: Morphological areal filters: Sphere and horizontal planar segment filters
- Part 82: Morphological areal filters: Motif filters
- Part 89: Morphological areal filters: Scale space techniques

Introduction

This part of ISO/TS 16610 is a geometrical product specification (GPS) Technical Specification and is to be regarded as a global GPS Technical Specification (see ISO/TR 14638). It influences the chain links 3 and 5 of all chains of standards.

For more detailed information about the relation of this part of ISO/TS 16610 to the GPS matrix model, see Annex C.

This part of ISO/TS 16610 develops the terminology and concepts for morphological operations and filters, including envelope filters.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 16610-40:2006</u> https://standards.iteh.ai/catalog/standards/sist/f422a14c-a389-43b7-96ea-187098db9756/iso-ts-16610-40-2006

Geometrical product specifications (GPS) — Filtration —

Part 40: Morphological profile filters: Basic concepts

1 Scope

This part of ISO/TS 16610 sets out the basic concepts and terminology for morphological operations and filters, including envelope filters.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies A RD PREVIEW

ISO 14660-1:1999, Geometrical **Product Specifications (GPS)** Geometrical features — Part 1: General terms and definitions

ISO/TS 16610-1:2006, Geometrical product specifications (GPS) — Filtration — Part 1: Overview and basic concepts https://standards.iteh.ai/catalog/standards/sist/t422a14c-a389-43b7-96ea-187098db9756/iso-ts-16610-40-2006

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 14660-1 and ISO/TS 16610-1 and the following apply.

3.1

morphological operation

binary operation involving two sets of geometrical objects, resulting in another geometrical object

NOTE Dilation and erosion are two primary morphological operations, and closing and opening are two secondary morphological operations.

3.2

morphological filter

morphological operation (3.1) that is both monotonically increasing (3.11) and idempotent (3.12)

3.3

envelope filter

closing (3.10) or opening (3.9) filter, whose output envelops the input profile or surface

NOTE A closing filter generates the upper envelope; an opening filter generates the lower envelope.

3.4

Minkowski addition

vector sum of points in two given geometrical sets

3.5

Minkowski subtraction

binary operation defined using Minkowski addition (3.4) of two sets

NOTE It is the complement of the Minkowski addition of the complement of the first set with the second set.

3.6

structuring element

(morphological filters) second geometrical object used in morphological operations

3.7

dilation

 $\langle morphological \rangle$ morphological operation that expands one input set by another

NOTE Dilation is not a morphological filter because it is not idempotent.

3.8

erosion

 $\langle morphological \rangle$ morphological operation that shrinks one input set by another

NOTE Erosion is not a morphological filter because it is not idempotent.

3.9

opening

(morphological filters) morphological operation obtained by applying the **erosion** (3.8) followed by the **dilation** (3.7)

NOTE An opening is both a morphological filter and one of the two basic building blocks for other morphological filters.

3.10 closing

ISO/TS 16610-40:2006

https://standards.iteh.ai/catalog/standards/sist/f422a14c-a389-43b7-96ea-

 \langle morphological filters \rangle morphological operation obtained by applying the **dilation** (3.7) followed by the **erosion** (3.8)

NOTE A closing is both a morphological filter and one of the two basic building blocks for other morphological filters.

3.11

monotonically increasing

(morphological filters) property of an operation that preserves the set containment condition on its operands

3.12

idempotent

property of an operation such that applying the operation more than once does not change the outcome

3.13

extensive

(morphological filters) property of an operation that the output of the operation contains the input

3.14

anti-extensive

 $\langle morphological \ filters \rangle$ property of an operation that the output of an operation is contained in the input

3.15

fill transform

operation that converts a profile into a two-dimensional object, and a surface into a three-dimensional object

3.16

umbra transform

fill transform (3.15) applicable to open profiles and open surfaces

3.17

rigid body transformation

operation on a geometric object involving translations and rotations that do not change the distance between any two points in the object

3.18

rigid motion invariant

property of an operation that does not change under rigid body transformation (3.17)

4 Basic concepts

4.1 Minkowski sums

4.1.1 General

Minkowski sums refer to Minkowski additions and Minkowski subtractions involving sets of geometric objects in any dimension. Geometric objects are represented by sets of points.

NOTE A concept diagram for the concepts for morphological filters is given in Annex A. The relationship to the filtration matrix model is given in Annex B. ANDARD PREVIEW

4.1.2 Minkowski addition

(standards.iteh.ai)

Minkowski addition of two sets, A and B, is denoted $A \oplus B$, and is defined as the vector addition

 $A \oplus B = \{a + b : a^{\text{HDM}}, b^{\text{HDM}}\}$ rds.iteh.ai/catalog/standards/sist/f422a14c-a389-43b7-96ea-187098db9756/iso-ts-16610-40-2006

Figure 1 illustrates the Minkowski addition of two sets, *A* and *B*, in two dimensions.

NOTE 1 Sets *A* and *B* can be of any dimensionality. They can also be of mixed dimensionality, e.g. *A* can be three-dimensional and *B* can be two-dimensional. Sets in one, two and three dimensions are of interest.

NOTE 2 Minkowski addition can be viewed as the sweep of one set over the other set. This can be seen in the construction of $A \oplus B$ in Figure 1. Minkowski addition leads to an enlargement of the sets that are added.

NOTE 3 Minkowski addition is commutative, i.e. $A \oplus B = B \oplus A$, as can be verified from the definition of Minkowski addition.

Figure 1 — Minkowski addition of two sets

(1)

4.1.3 Minkowski subtraction

Minkowski subtraction of set *B* from set *A* is denoted $A \odot B$, and is defined as

$$A \odot B = \overline{\overline{A} \oplus B}$$
(2)

where the bar denotes complementation. Figure 2 illustrates the Minkowski subtraction of set B from set A in two dimensions.

NOTE 1 As in Minkowski addition, sets *A* and *B* can be of any dimensionality. They can also be of mixed dimensionality, e.g. *A* can be three-dimensional and *B* can be two-dimensional. Sets in one, two and three dimensions are of interest.

NOTE 2 Minkowski subtraction leads to a reduction of the set A, as shown in the construction of $A \odot B$ in Figure 2.

NOTE 3 Minkowski subtraction is not commutative, i.e. $A \odot B$ is not the same as $B \odot A$.

4.2 Morphological operations

4.2.1 General

NOTE

The following morphological operations involving sets A and B are defined using Minkowski sums. It is customary to refer to the set A as the input set and the set B as the structuring element. A symmetric version of the structuring element B is obtained by a reflection of B through the origin of B and is denoted

$$\overset{\vee}{B} = \{-b : b \in B\}\tag{3}$$

The structuring element *B* shown in Figures 1 and 2 is already symmetrical about its origin; hence B = B in these cases. It is possible to define two primary morphological operations, called dilation and erosion, and two secondary morphological operations, called opening and closing.

4.2.2 Dilation

Dilation of A by B is defined as

$$D(A,B) = A \oplus \overset{\vee}{B} \tag{4}$$

NOTE 1 Dilation expands the input set *A* by the structuring element *B*.

An example of dilation is shown in Figure 1. Due to the symmetry of B in this example, D(A,B) is the same as NOTE 2 $A \oplus B$. An example where *B* is not symmetric is shown in Figure 3.

Figure 3 — Dilation of input set A by a non-symmetric structuring element B

4.2.3 Erosion

Erosion of A by B is defined as

 $E(A,B) = A \odot B$ iTeh STANDARD PREVIEW (5)

Erosion shrinks the input set A by the structuring element B. NOTE 1

NOTE 2 An example of erosion is shown in Figure 26 Due to the symmetry of B in this example, E(A,B) is the same as $A \odot B$. An example where B is not symmetric is shown in Figure 422a14c-a389-43b7-96ea-

NOTE The reference point of the structuring element is the lower left corner.

Figure 4 — Erosion of input set A by a non-symmetric structuring element B

4.2.4 Opening

Opening of A by B is defined as

$$O(A,B) = D\left(E(A,B), \overset{\vee}{B}\right) \tag{6}$$

Opening is obtained by applying the erosion followed by the dilation. The sequence is important. Figure 5 NOTE 1 illustrates the opening of A by B in two dimensions.