# TECHNICAL REPORT



First edition 2005-11-15

# Mechanical testing of metals — Symbols and definitions in published standards

Essais mécaniques des métaux — Symboles et définitions figurant dans les normes publiées

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 25679:2005 https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-78537243fd44/iso-tr-25679-2005



Reference number ISO/TR 25679:2005(E)

#### PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 25679:2005 https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-78537243fd44/iso-tr-25679-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

# Contents

| Forewo       | ord                                                                                                                            | v    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|------|
| Introdu      | iction                                                                                                                         | . vi |
| 1            | Scope                                                                                                                          | 1    |
| 2            | Designation system                                                                                                             | 1    |
| 3            | Definitions and symbols                                                                                                        | 3    |
| 3.1          | Code 1.01 Metallic materials — Uninterrupted uniaxial creep testing in tension-method of test.                                 |      |
| 3.1.1        | Definitions                                                                                                                    | 4    |
| 3.2          | Code 1.02 Metallic materials — Calibration of force-proving instruments used for the verification of uniaxial testing machines | 6    |
| 3.3          | Code 1.03 Metallic materials — Tensile testing at elevated temperature                                                         | 0    |
| 3.3.1        | Definitions                                                                                                                    | /    |
| 3.4          | Code 1.04 Metallic materials — Tensile testing                                                                                 |      |
| 3.4.1        | Definitions                                                                                                                    |      |
| 3.5          | Code 1.05 Metallic materials — Verification of static uniaxial tensile testing machines                                        | 12   |
| 3.5.1        | Definitions                                                                                                                    |      |
| 3.6          | Code 1.06 Metallic materials A Verification of static uniaxial testing machines — tension                                      |      |
|              | creep testing machines                                                                                                         | 13   |
| 3.7          | Code 1.07 Metallic materials - Calibration of extension eters used in uniaxial testing                                         |      |
| 3.8          | Code 1.08 Metallic materials — Tensile testing at low temperature                                                              |      |
| 3.8.1        | Definitions                                                                                                                    | 14   |
| 3.9          | Code 1.09 Metallic materials — Tensile testing in liquid helium                                                                | 16   |
| 3.9.1        | Definitions                                                                                                                    | 16   |
| 3.10         | Code 2.01 Metallic materials — Bend test.                                                                                      | 17   |
| 3.11         | Code 2.02 Metallic materials — Sheet and strip 3 mm thick or less — Reverse bend test                                          |      |
| 3.12         | Code 2.03 Metallic materials — Wire — Simple torsion test                                                                      |      |
| 3.13         | Code 2.04 Metallic materials — Wire — Reverse bend test                                                                        |      |
| 3.14         | Code 2.06 Metallic materials — Sheet and strip — Modified Erichsen cupping test                                                |      |
| 3.15         | Code 2.07 Metallic materials — Tube (in full section) — Bend test                                                              |      |
| 3.16         | Code 2.08 Metallic materials — Tube — Flattening test                                                                          |      |
| 3.17         | Code 2.09 Metallic materials — Tube — Drift expanding test                                                                     |      |
| 3.18<br>3.19 | Code 2.10 Metallic materials — Tube — Flanging test<br>Code 2.11 Metallic materials — Tube — Ring expanding test               |      |
| 3.19         | Code 2.13 — Metallic materials — Fube — Ring expanding test                                                                    |      |
| 3.20         | Code 2.13 — Metallic materials — Whe — Reverse torsion test                                                                    |      |
| 3.21.1       | Definitions                                                                                                                    |      |
| 3.22         | Code 2.15 Metallic materials — Sheet and strip — Determination of tensile strain                                               |      |
| 0.22         | hardening exponent                                                                                                             | 21   |
| 3.23         | Code 2.16 Metallic materials — Earing test                                                                                     | 22   |
| 3.24         | Code 2.17 Metallic materials — Guidelines for the determination of forming-limit diagrams                                      |      |
| 3.25         | Code 2.18 Metallic materials — Tube ring hydraulic pressure test                                                               |      |
| 3.26         | Code 2.19 Metallic materials — Strain analysis report                                                                          |      |
| 3.27         | Code 3.01 Metallic materials — Hardness test — Knoop test                                                                      |      |
| 3.28         | Code 3.02 Metallic materials — Brinell hardness test — Part 1: Test method                                                     |      |
| 3.29         | Code 3.03 Hardness test — Vickers hardness test — Part 1: Test method                                                          |      |
| 3.30         | Code 3.04 Metallic materials — Rockwell Hardness test — Part 1: Test method (scales A-                                         |      |
|              | B-C-D-E-F-G-H-K-N-T)                                                                                                           | 25   |
| 3.31         | Code 3.06 Metallic materials — Instrumented indentation test for hardness and materials                                        |      |
|              | parameters — Part : Test method                                                                                                |      |
| 3.32         | Code 4.01 Charpy impact test (U-notch)                                                                                         | 27   |

| 3.33   | Code 4.01 Metallic materials — Charpy pendulum impact test — Part 1: Test method           |    |
|--------|--------------------------------------------------------------------------------------------|----|
| 3.33.1 | Definitions                                                                                | 27 |
| 3.34   | Code 4.01 Metallic materials — Charpy pendulum impact test — Part 2: Verification of test  |    |
|        | machines                                                                                   | 28 |
| 3.34.1 | Definitions                                                                                | 28 |
| 3.35   | Code 4.01 Metallic materials — Charpy pendulum impact test — Part 3: Preparation and       |    |
|        | characterization of Charpy V reference test pieces for verification of test machines       | 30 |
| 3.36   | Code 4.03 — Metallic materials –Determination of the plane-strain fracture toughness       |    |
| 3.36.1 | Definitions                                                                                |    |
| 3.37   | Code 4.04 Steel — Charpy V-notch pendulum impact test — Instrumented test method           |    |
| 3.37.1 | Definitions                                                                                |    |
| 3.38   | Code 4.05 Metallic materials — Unified method of test for the determination of guasistatic | 51 |
| 5.50   | fracture toughness                                                                         | 22 |
| 3.38.1 | Definitions                                                                                |    |
|        |                                                                                            | -  |
| 3.39   | Code 5.01 Metals — Axial load fatigue testing.                                             |    |
| 3.40   | Code 5.01 Metalic materials — Fatigue testing — Axial force controlled method              |    |
| 3.41   | Code 5.02 Metals — Rotating bar bending fatigue testing                                    |    |
| 3.42   | Code 5.03 Steel — Torsional stress fatigue testing                                         | 37 |
| 3.43   | Code 5.04 Axial load fatigue machines — Dynamic force calibration — Strain gauge           |    |
|        | technique                                                                                  | 37 |
| 3.44   | Code 5.05 Metallic materials — Fatigue testing — Axial-strain-controlled method            |    |
| 3.44.1 | Definitions                                                                                | 38 |
| 3.45   | Code 5.06 Metallic materials — Fatigue testing — Statistical planning and analysis of data | 40 |
| 3.45.1 | Definitions                                                                                | 40 |
| 3.46   | Code 5.07 Metallic materials — Fatigue testing — Fatigue crack growth method               | 40 |
| 3.46.1 |                                                                                            | 40 |
| 4      | Concordance of Keywords Scope                                                              | 13 |
| -      | Concordance of Keywords Scope.<br>(Standards.iteh.ai)                                      | 70 |
| 5      | Alphabetical listing of symbols                                                            | 47 |
| Annex  | A Index                                                                                    | 63 |
|        | https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-                  |    |
|        |                                                                                            |    |

78537243fd44/iso-tr-25679-2005

# Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 25679 was prepared by Technical Committee ISO/TC 164, Mechanical testing of metals.

This first edition of ISO/TR 25679, together with ISO 237181, Metallic materials — Terms used in mechanical testing, cancel and replace ISO/TR 12735-1.1996, Mechanical testing of metals — Symbols used with their definitions — Part 1: Symbols and definitions in published standards.

<sup>1)</sup> In preparation.

# Introduction

This index of symbols and definitions in published standards has been prepared to provide an appropriate means for avoiding contradictions and misunderstandings and to standardize various kinds of symbols and their definitions generally used in this field. Wherever possible, the same symbol has been used to denote the same type of parameter in the different tests, but the differing types of test piece, product form and test have to be taken into account. This has not been universally possible and symbols should always be considered in the context of the specific method of test being used.

In the discussion of revising ISO/TR 12735-1:1996, common terms among the published standards were selected and a Draft International Standard covering terminology: ISO/DIS 23718, *Metallic materials* — *Terms used in mechanical testing,* was prepared. This Technical Report, which is an index of symbols and definitions, was separated from the terminology (ISO/DIS 23718) in order to be updated flexibly in future.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 25679:2005 https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-78537243fd44/iso-tr-25679-2005

# Mechanical testing of metals — Symbols and definitions in published standards

# 1 Scope

This Technical Report enumerates the symbols and definitions used in International Standards for specific methods of mechanical testing of metallic materials, which are the responsibility of ISO Technical Committee 164, *Mechanical testing of metals*. The data is indexed alphabetically and via a coding system. Annex A provides an additional cross-reference between the coding system and relevant International Standard numbers.

# 2 Designation system

To assist in indexing and cross-referencing symbols and definitions, a code number is used to identify test methods. The first digit of the code identifies the sub-committee of ISO/TC 164 that is responsible for preparing and reviewing International Standards for that test method. Subsequent digits are in ascending order of the ISO number for each International Standard or Draft International Sandard.

# (standards.iteh.ai)

International Standards that relate to a common test method and which all share the same set of symbols and definitions are given a single code number 180/TR 25679:2005

If there existed both a valid International Standard and the DIS (Draft International Sandard) or FDIS will have been assigned to the same code number.

Each test method for metallic materials is identified and designated as shown in Table 1. Annex A provides a rapid cross-reference to the coding system.

|      | Test Identity                                                                                                                                                                            | Code | ISO standards   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| SC 1 | Metallic materials - Uninterrupted uniaxial creep testing in tension - Method of                                                                                                         | 1.01 | 204:1997        |
|      | test                                                                                                                                                                                     |      | DIS 204:2005    |
|      | Metallic materials — Calibration of force-proving instruments used for the verification of uniaxial testing machines                                                                     | 1.02 | 376:2004        |
|      | Metallic materials — Tensile testing at elevated temperature                                                                                                                             | 1.03 | 783:1999        |
|      | Metallic materials — Tensile testing at ambient temperature                                                                                                                              | 1.04 | 6892:1998       |
|      | Metallic materials — Verification of static uniaxial testing machines — Part 1:<br>Tension/compression testing machines — Verification and calibration of the force-<br>measuring system | 1.05 | 7500-1:2004     |
|      | Metallic materials — Verification of static uniaxial testing machines — Part 2:                                                                                                          | 1.06 | 7500-2:1996     |
|      | Tension creep testing machines — Verification of the applied load                                                                                                                        |      | DIS 7500-2:2005 |
|      | Metallic materials — Calibration of extensometers used in uniaxial testing                                                                                                               | 1.07 | 9513:1999       |
|      | Metallic materials — Tensile testing at low temperature                                                                                                                                  | 1.08 | 15579:2000      |
|      | Metallic materials — Tensile testing in liquid helium                                                                                                                                    | 1.09 | 19819:2004      |

Table 1 — Identity and code of mechanical test

|      | Test Identity                                                                                                           | Code    | ISO standards                              |
|------|-------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|
| SC 2 | Metallic materials — Bend test                                                                                          | 2.01    | 7438:2005                                  |
|      | Metallic materials — Sheet and strip 3 mm thick or less — Reverse bend test                                             | 2.02    | 7799:1985                                  |
|      | Metallic materials — Wire — Simple torsion test                                                                         | 2.03    | 7800:2003                                  |
|      | Metallic materials — Wire — Reverse bend test                                                                           | 2.04    | 7801:1984                                  |
|      | *Metallic materials — Wire — Wrapping test                                                                              | 2.05    | 7802:1983                                  |
|      | Metallic materials — Sheet and strip — Erichsen cupping test                                                            | 2.06    | 20482:2003                                 |
|      | Metallic materials — Tube (in full section) — Bend test                                                                 | 2.07    | 8491:1998                                  |
|      | Metallic materials — Tube — Flattening test                                                                             | 2.08    | 8492:1998                                  |
|      | Metallic materials — Tube — Drift-expanding test                                                                        | 2.09    | 8493:1998                                  |
|      | Metallic materials — Tube — Flanging test                                                                               | 2.10    | 8494:1998                                  |
|      | Metallic materials — Tube — Ring-expanding test                                                                         | 2.11    | 8495:1998                                  |
|      | *Metallic materials — Tube — Ring tensile test                                                                          | 2.12    | 8496:1998                                  |
|      | Metallic materials — Wire — Reverse torsion test                                                                        | 2.13    | 9649:1990                                  |
|      | Metallic materials — Sheet and strip — Determination of plastic strain ratio                                            | 2.14    | 10113:1991<br>DIS 10113:2005               |
|      | Metallic materials — Sheet and strip — Determination of tensile strain hardening exponent                               | 2.15    | 10275:1993                                 |
|      | Metallic materials — Earing test (standards.iteh.ai)                                                                    | 2.16    | 11531:1994                                 |
|      | Metallic materials — Guidelines for the determination of forming-limit diagrams                                         | 2.17    | 12004:1997                                 |
|      | Metallic materials — Tube ring hydraulic pressure test ndards/sist/b6cc58a1-4cab-44e                                    | 1-2918- | 15363:2000                                 |
|      | Metallic materials — Strain analysis report 8537243fd44/iso-tr-25679-2005                                               | 2.19    | TR 14936:1998                              |
| SC 3 | Metallic materials — Hardness test — Knoop test                                                                         | 3.01    | 4545:1993<br>FDIS 4545-1 to<br>4545-4:2005 |
|      | *Metallic materials — Hardness test — Verification of Knoop hardness testing machines                                   | 3.01    | 4546:1993                                  |
|      | *Metallic materials — Hardness test — Calibration of standardized blocks to be used for Knoop hardness testing machines | 3.01    | 4547:1993                                  |
|      | Metallic materials — Brinell hardness test — Part 1: Test method                                                        | 3.02    | 6506-1:1999<br>FDIS 6506-1:2005            |
|      | *Metallic materials — Brinell hardness test — Part 2: Verification and calibration of testing machines                  | 3.02    | 6506-2:1999<br>FDIS 6506-2:2005            |
|      | *Metallic materials — Brinell hardness test — Part 3: Calibration of reference blocks                                   | 3.02    | 6506-3:1999<br>FDIS 6506-3:2005            |
|      | Metallic materials — Vickers hardness test — Part 1: Test method                                                        | 3.03    | 6507-1:1997<br>FDIS 6507-1:2005            |
|      | *Metallic materials — Vickers hardness test — Part 2: Verification of testing machines                                  | 3.03    | 6507-2:1997<br>FDIS 6507-2:2005            |
|      | *Metallic materials — Vickers hardness test — Part 3: Calibration of reference blocks                                   | 3.03    | 6507-3:1997<br>FDIS 6507-3:2005            |
|      | Metallic materials — Rockwell hardness test — Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)              | 3.04    | 6508-1:1999<br>FDIS 6508-1:2005            |

|                                                                       | Test Identity                                                                                     | Code | ISO standards                   |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|---------------------------------|
| *Metallic materials — Rockwell h of testing machines (scales A, B,    | ardness test — Part 2: Verification and calibration<br>C, D, E, F, G, H, K, N, T)                 | 3.04 | 6508-2:1999<br>FDIS 6508-2:2005 |
| *Metallic materials —Rockwell h<br>blocks (scales A, B, C, D, E, F, G | ardness test — Part 3: Calibration of reference<br>, H, K, N, T)                                  | 3.04 | 6508-3:1999<br>FDIS 6508-3:2005 |
| *Metallic materials — Hardness use in tests made on flat surfaces     | testing — Tables of Knoop hardness values for s                                                   | 3.05 | 10250:1994                      |
| Metallic materials — Instrumen<br>parameters — Part 1: Test metho     | ted indentation test for hardness and materials                                                   | 3.06 | 14577-1:2002                    |
|                                                                       | ted indentation test for hardness and materials and calibration of testing machines               | 3.06 | 14577-2:2002                    |
| *Metallic materials — Instrumer parameters — Part 3: Calibration      | ted indentation test for hardness and materials of reference blocks                               | 3.06 | 14577-3:2002                    |
| *Metallic materials — Conversior                                      | of hardness values                                                                                | 3.07 | 18265:2003                      |
| SC 4 Steel — Charpy impact test (U-n                                  | otch)                                                                                             | 4.01 | 83:1976                         |
| *Steel — Charpy impact test (V-r                                      | otch)                                                                                             | 4.01 | 148:1983                        |
| Metallic materials — Charpy pen                                       | dulum impact test — Part 1: Test method                                                           | 4.01 | FDIS 148-1:2005                 |
| machinaa                                                              | ndulum impact test — Part 2: Verification of test                                                 | 4.01 | 148-2:1998                      |
| Metallic materials — Charpy pe                                        | endulum impact test — Part 3: Preparation and rence test pieces for verification of test machines | 4.01 | 148-3:1998                      |
| *Steel — Designation of test piec                                     | e axes<br>ISO/TR 25679:2005                                                                       | 4.02 | 3785:1976<br>FDIS 3785:2005     |
| Metallic materials                                                    | priof plane strain fracture toughness -44e1-a9f2-                                                 | 4.03 | 12737:2005                      |
| Steel — Charpy V-notch pendulu                                        | m impact test — Instrumented test method                                                          | 4.04 | 14556:2000                      |
|                                                                       | thod of test for the determination of quasistatic                                                 | 4.05 | 12135:2002                      |
| SC 5 Metals — Axial load fatigue testir                               | ıg                                                                                                | 5.01 | 1099:1975                       |
| Metallic materials — Fatigue test                                     | ing — Axial force controlled method                                                               | 5.01 | DIS 1099:2005                   |
| Metals — Rotating bar bending fa                                      | atigue testing                                                                                    | 5.02 | 1143:1975                       |
| Steel — Torsional stress fatigue                                      | testing                                                                                           | 5.03 | 1352:1977                       |
| Axial load fatigue testing machir technique                           | es — Dynamic force calibration — Strain gauge                                                     | 5.04 | 4965:1979                       |
| Metallic materials — Fatigue test                                     | ing — Axial-strain-controlled method                                                              | 5.05 | 12106:2003                      |
| Metallic materials — Fatigue test                                     | ing — Statistical planning and analysis of data                                                   | 5.06 | 12107:2003                      |
| Metallic materials — Fatigue test                                     | ing — Fatigue crack growth method                                                                 | 5.07 | 12108:2002                      |
| * There are no symbols or definitions in the                          | text of the standard.                                                                             |      |                                 |

Table 1 (continued)

# 3 Definitions and symbols

Definitions and symbols employed in all of the International Standards and (Final) Draft International Standards prepared by ISO/TC 164, *Mechanical testing of metals* are classified under the codes listed in Table 1, *Identity and code of mechanical test*. If a standard has separate clauses for definitions and symbols, the definitions are listed first, followed by a table of symbols. Each table of symbols is re-arranged into a consistent alphabetical order. For clarity, notes, alternative definitions and conditions embodied within definitions, which are particular to the individual standard, are excluded.

# 3.1 Code 1.01 Metallic materials — Uninterrupted uniaxial creep testing in tension — Method of test

# 3.1.1 Definitions

# reference length, L<sub>r</sub>

base length used for the calculation of elongation

NOTE Examples of reference lengths for several types of test pieces are given.

# original reference length, $L_{\rm ro}$

reference length determined at ambient temperature before the test L<sub>ro</sub>, not exceeding the parallel length L<sub>c</sub> by more than 10 % L<sub>c</sub> for circular test pieces, or by more than 15 % L<sub>c</sub> for square or rectangular test pieces

# final reference length, L<sub>ru</sub>

reference length determined at ambient temperature after rupture, the two pieces having been carefully fitted back together so that their axes lie in a straight line

# original gauge length, $L_{0}$

parallel length, L<sub>c</sub>

length between gauge length marks on the piece measured at ambient temperature before the test

# final gauge length after rupture, $L_{\mu}$

length between gauge marks on the test piece measured after rupture, at ambient temperature, the two pieces having been carefully fitted back together so that their axes lie in a straight line

# **iTeh STANDARD PREVIEW**

length of the parallel reduced section of the test piece (standards.iteh.ai)

# extensometer gauge length, $L_{e}$

distance between the measuring points of the extensioneter; as near as possible to the reference length

https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-78537243fd44/iso-tr-25679-2005

# original cross-sectional area, So

cross-sectional area of the parallel length determined at ambient temperature prior to testing

# minimum cross-sectional area after rupture, $S_{\mu}$

minimum cross-sectional area of the parallel length determined at ambient temperature after rupture, the two pieces having been carefully fitted back together so that their axes lie in a straight line

# initial stress, $\sigma_0$

applied force divided by the original cross-sectional area So of the test piece

### elongation

increase of the reference length at any moment during the test

# percentage creep elongation, $A_{\rm f}$

at any given moment t during the test, the increase in the reference length between this moment and the zero moment ( $\Delta L_{\rm rt}$ ) at a specified temperature, expressed as a percentage of the original reference length

$$A_f = \frac{\Delta L_{\rm rt}}{L_{\rm ro}} \times 100$$

The symbol  $A_f$  may have as superscript the specified temperature T, in degrees Celsius, and as subscript the NOTE 1 stress, in megapascals, and the time t, in hours.

NOTE 2 By convention, the zero moment (start of time) is the moment at which the initial stress ( $\sigma_0$ ) is applied to the test piece. The origin of the elongation is the value of the reference length at the zero moment.

# percentage elongation after creep rupture, $\mathit{A}_{fu}$

permanent elongation of the reference length after rupture  $(L_{ru} - L_{ro})$ , expressed as a percentage of the original reference length:

$$A_{\rm fu} = \frac{L_{\rm ru} - L_{\rm ro}}{L_{\rm ro}} \times 100$$

NOTE The symbol  $A_{fu}$  may have as superscript the specified temperature *T*, in degrees Celsius, and as subscript the stress, in megapascals.

#### percentage reduction of area after creep rupture, $Z_{\rm u}$

maximum change in cross-sectional area measured after rupture  $(S_0 - S_u)$ , expressed as a percentage of the original cross-sectional area  $(S_0)$ :

$$Z_{\rm u} = \frac{S_{\rm o} - S_{\rm u}}{S_{\rm o}} \times 100$$

NOTE The symbol  $Z_u$  may have as superscript the specified temperature *T*, in degrees Celsius, and as subscript the stress, in megapascals.

#### creep rupture time, $t_{\rm u}$

time required for the test piece, maintained at the specified temperature *T* and strained by the specified tensile force, to rupture

NOTE The symbol  $t_u$  may have as superscript the specified temperature *T*, in degrees Celsius, and as subscript the stress, in megapascals. (standards.iteh.ai)

#### simple machine

test machine that allows the straining of only one test piece at a time

https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-

multiple machine 78537243fd44/iso-tr-25679-2005

test machine that allows simultaneous straining of more than one test piece at the same temperature

| Symbol          | Unit | Meaning                                                                                                  |
|-----------------|------|----------------------------------------------------------------------------------------------------------|
| $\Delta L_{rt}$ | mm   | Increase in the reference length between a moment t and the zero moment                                  |
| $\sigma_{o}$    | MPa  | Initial stress                                                                                           |
| $A_{f}$         | %    | Percentage creep elongation                                                                              |
| $A_{fu}$        | %    | Percentage elongation after creep rupture                                                                |
| b               | mm   | Width of the cross-section of the parallel length of a test piece of square or rectangular cross-section |
| d               | mm   | Diameter of the cross-section of the parallel length of a cylindrical test piece                         |
| L <sub>c</sub>  | mm   | Parallel length                                                                                          |
| L <sub>e</sub>  | mm   | Extensometer gauge length                                                                                |
| L <sub>o</sub>  | mm   | Original gauge length                                                                                    |
| L <sub>r</sub>  | mm   | Reference length                                                                                         |
| L <sub>ro</sub> | mm   | Original reference length                                                                                |
| $L_{\sf ru}$    | mm   | Final reference length                                                                                   |
| L <sub>u</sub>  | mm   | Final gauge length after rupture                                                                         |

Table 2 — Symbols designated in the International Standard, Code 1.01

| Symbol         | Unit            | Meaning                                              |
|----------------|-----------------|------------------------------------------------------|
| r              | mm              | Transition radius                                    |
| So             | mm <sup>2</sup> | Original cross-sectional area of the parallel length |
| S <sub>u</sub> | mm <sup>2</sup> | Minimum cross-sectional area after rupture           |
| Т              | °C              | Specified temperature                                |
| T <sub>i</sub> | °C              | Indicated temperature                                |
| t <sub>u</sub> | h               | Creep rupture time                                   |
| Z <sub>u</sub> | %               | Percentage reduction of area after creep rupture     |

# Table 2 (continued)

# 3.2 Code 1.02 Metallic materials — Calibration of force-proving instruments used for the verification of uniaxial testing machines

#### Symbol Unit Designation b % Relative reproducibility error with rotation b' % Relative repeatability without rotation Relative interpolation error DARD PREVIEW % $f_{c}$ Maximum capacity of the transducers iten.ai) $F_{f}$ Ν $F_{N}$ Ν Maximum capacity of the measuring range % $f_{o}$ Relative zeto errorh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-Reading <sup>a</sup> on the indicator after removal of force i<sub>f</sub> i<sub>o</sub> Reading <sup>a</sup> on the indicator before application of force Resolution of the indicator r \_ % Relative reversibility error of the force proving instrument v Х Deflection with increasing test force

Average value of the deflections with rotation

Deflection with decreasing test force

Computed value of deflection

Maximum deflection

Minimum deflection

Average value of the deflections without rotation

Deflection corresponding to the maximum capacity

#### Table 3 — Symbols designated in the International Standard, Code 1.02

| а | Reading value corresponding to the deflection. |
|---|------------------------------------------------|

\_\_\_\_

 $\overline{X_{r}}$ 

Xwr

X'

Xa

 $X_{\max}$ 

 $X_{min}$ 

 $X_{N}$ 

# 3.3 Code 1.03 Metallic materials — Tensile testing at elevated temperature

# 3.3.1 Definitions

### gauge length

length of the parallel portion of the test piece on which elongation is measured at any moment during the test

### original gauge length, $L_{0}$

gauge length at ambient temperature before heating of the test piece and before application of force

### final gauge length, $L_{\mu}$

gauge length after rupture, the two pieces having been carefully fitted back together so that their axes lie in a straight line, measured at ambient temperature

# parallel length, $L_c$

parallel portion of the test piece

NOTE The concept of parallel length is replaced by the concept of distance between grips for non-machined test pieces.

### extensometer gauge length, L<sub>e</sub>

length of the parallel portion of the test piece used for the measurement of elongation by means of an extensometer

The length may differ from L, and could have a value greater than b, d, or D but less than  $L_{c}$ . NOTE

# (standards.iteh.ai)

extension increase in the extensioneter gauge length  $(L_e)$ , at any moment during the test

ISO/TR 25679:2005

elongation https://standards.iteh.ai/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2increase in the original gauge length (Lo) under the action of the tensile force, at any moment during the test

### percentage elongation

elongation expressed as a percentage of the original gauge length  $(L_0)$ 

### percentage permanent elongation

increase in the original gauge length of a test piece after removal of a specified stress, expressed as a percentage of the original gauge length  $(L_{0})$ 

### percentage elongation after fracture, A

permanent elongation of the gauge length after fracture  $(L_{\rm II} - L_{\rm O})$ , expressed as a percentage of the original gauge length  $(L_0)$ 

### percentage total elongation at fracture, $A_{t}$

total elongation (elastic elongation plus plastic elongation) of the gauge length at the moment of fracture, expressed as a percentage of the original gauge length  $(L_{o})$ 

# percentage reduction of area, Z

maximum change in cross-sectional area  $(S_0 - S_u)$  which has occurred during the test, expressed as a percentage of the original cross-sectional area  $(S_0)$ 

# maximum force, $F_{m}$

greatest force which the test piece withstands during the test

# stress

force at any moment during the test divided by the original cross-sectional area  $(S_0)$  of the test piece

# tensile strength, R<sub>m</sub>

stress corresponding to the maximum force  $(F_m)$ 

### yield strength

when the metallic material exhibits a yield phenomenon, point reached during the test at which plastic deformation occurs without any increase in the force

# upper yield strength, R<sub>eH</sub>

value of stress at the moment when the first decrease in force is observed

# lower yield strength, R<sub>eL</sub>

lowest value of stress during plastic yielding, ignoring any transient effects

# proof strength, non-proportional extension, R<sub>p</sub>

stress at which a non-proportional extension is equal to a specified proportion e of the extension stress at  $(L_e)$ 

| Symbol          | Unit                | Designation                                                                                                                  |
|-----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| $\theta_{i}$    | °C                  | Indicated temperature                                                                                                        |
| θ               | °C                  | Fixed temperature                                                                                                            |
| a a             | mm                  | Thickness of a flat test piece or wall thickness of a tube                                                                   |
| A b             | %                   | Percentage elongation after fracture $S_{L_0}^{L_0} \times 100$                                                              |
| A <sub>t</sub>  | %                   | Percentage total elongation at fracture 2005                                                                                 |
| b               | mm                  | Width of the parallel length of a flat test piece or average width of a longitudinal strip from a tube or width of flat wire |
| d               | mm                  | Diameter of the parallel length of a circular test piece or diameter of round wire or internal diameter of a tube            |
| D               | mm                  | External diameter of a tube                                                                                                  |
| $F_{m}$         | Ν                   | Maximum force                                                                                                                |
| k               | —                   | Coefficient of proportionality                                                                                               |
| L <sub>c</sub>  | mm                  | Parallel length                                                                                                              |
| L <sub>e</sub>  | mm                  | Extensometer gauge length                                                                                                    |
| L <sub>o</sub>  | mm                  | Original gauge length                                                                                                        |
| Lt              | mm                  | Total length of test piece                                                                                                   |
| L <sub>u</sub>  | mm                  | Final gauge length after fracture                                                                                            |
| R <sub>eH</sub> | N/mm <sup>2 c</sup> | Upper yield strength                                                                                                         |
| R <sub>eL</sub> | N/mm <sup>2</sup>   | Lower yield strength                                                                                                         |
| R <sub>m</sub>  | N/mm <sup>2</sup>   | Tensile strength                                                                                                             |
| Rp              | N/mm <sup>2</sup>   | Proof strength, non-proportional extension                                                                                   |
| S <sub>o</sub>  | mm <sup>2</sup>     | Original cross-sectional area of the parallel length                                                                         |
| S <sub>u</sub>  | mm <sup>2</sup>     | Minimum cross-sectional area after fracture                                                                                  |

# Table 4 — Symbols designated in the International Standard, Code 1.03

#### Table 4 (continued)

| Symbo              | ymbol Unit Designation                                                                                                                                                     |                                                                                                                                |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ζ                  | %                                                                                                                                                                          | Percentage reduction of area: $\frac{S_0 - S_u}{S_0} \times 100$                                                               |  |  |
| <sup>a</sup> The   | symbol T is also used                                                                                                                                                      | in steel-tube product standards.                                                                                               |  |  |
| <sup>b</sup> In th | e case of proportional                                                                                                                                                     | test pieces, only if the original gauge length is other than $5,65\sqrt{S_o}$ , $5,65\sqrt{S_o} = 5\sqrt{\frac{4S_o}{\pi}}$ ,  |  |  |
|                    | re $S_{o}$ is the original cr<br>ficient of proportionali                                                                                                                  | oss-sectional area of the parallel length, shall the symbol <i>A</i> be supplemented by an index indicating the ty used, e.g.: |  |  |
| A <sub>11,</sub>   | $A_{11,3}$ = percentage elongation of an original gauge length ( $L_0$ ) of $11,3\sqrt{S_0}$ .                                                                             |                                                                                                                                |  |  |
|                    | In the case of non-proportional test pieces, the symbol A shall be supplemented by a subscript designating the original gauge length used, expressed in millimetres, e.g.: |                                                                                                                                |  |  |
| A <sub>80</sub>    | $A_{80}$ = percentage elongation of an original gauge length ( $L_{0}$ ) of 80 mm.                                                                                         |                                                                                                                                |  |  |
| <sup>c</sup> 1 N/r | nm <sup>2</sup> = 1 MPa                                                                                                                                                    |                                                                                                                                |  |  |

# 3.4 Code 1.04 Metallic materials — Tensile testing at ambient temperature

# 3.4.1 Definitions

gauge length, L

# iTeh STANDARD PREVIEW

length of the cylindrical or prismatic portion of the test piece on which elongation shall be measured. In particular, a distinction is made between:

# original gauge length, L<sub>o</sub>

ISO/TR 25679:2005

gauge length before application of force/catalog/standards/sist/b6cc58a1-4cab-44e1-a9f2-78537243fd44/iso-tr-25679-2005

final gauge length,  $L_{\rm u}$ 

gauge length after rupture of the test piece

### parallel length, L<sub>c</sub>

parallel portion of the reduced section of the test piece

NOTE The concept of parallel length is replaced by the concept of distance between grips for non-machined test pieces.

### elongation

increase in the original gauge length  $(L_0)$  at any moment during the test

### percentage elongation

elongation expressed as a percentage of the original gauge length  $(L_0)$ 

### percentage permanent elongation

increase in the original gauge length of a test piece after removal of a specified stress, expressed as a percentage of the original gauge length ( $L_0$ )

### percentage elongation after fracture, A

permanent elongation of the gauge length after fracture  $(L_u - L_o)$ , expressed as a percentage of the original gauge length  $(L_o)$ 

In the case of proportional test pieces, only if the original gauge length is other than  $5{,}65\sqrt{S_0}$ , where  $S_0$  is the original cross-sectional area of the parallel length, the symbol *A* shall be supplemented by an index indicating the coefficient of proportionality used, for example:

 $A_{11,3}$  = percentage elongation of a gauge length ( $L_0$ ) of  $11,3\sqrt{S_0}$