INTERNATIONAL STANDARD

Aerospace - Fluid systems and components - Pressure and temperature classifications

Aéronautique et espace - Systèmes de fluides et éléments constitutifs - Classification des températures et des pressions

iTeh STANDARD PREVIEW (standards.iteh.ai)

Reference number ISO 6771:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6771:2007
https://standards.iteh.ai/catalog/standards/sist/b9ea78e-a161-4546-bd45-387f4a904032/iso-6771-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6771 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee SC 10, Aerospace fluid systems and components.

This third edition cancels and replaces the second edition (ISO 6771:1987), which has been technically revised. This third edition adds imperial unit equivalentst and the nominal temperatures and pressures for all classes have been revised.

ISO 6771:2007
https://standards.iteh.ai/catalog/standards/sist/bf9ea78e-a161-4546-bd45-387f4a904032/iso-6771-2007

Introduction

Aerospace fluid systems and components are generally designed and marked for a specific fluid pressure class and temperature type.

iTeh STANDARD PREVIEW (standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/b99ea78e-a161-4546-bd45-387f4a904032/iso-6771-2007

Aerospace - Fluid systems and components - Pressure and temperature classifications

1 Scope

This International Standard specifies the pressure classes and temperature types for the basic systems and component systems that are commonly used in aerospace fluid systems. Classes and types in the lower ranges represent systems in common use. Those in the higher ranges represent systems that are in less common use or that are used in developmental systems.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1

basic system

temperature types and pressure classes of the aircraff fluid systems, "'sually specified in the aircraft specification, with which the vehicle is designed to be operated
(Stand arrds. , iteh.ai)
NOTE 1 The basic system consists of several subsystems.
NOTE 2 The temperature type and pressure classes are tested and certified as an integral part of vehicle performance. https:/standards.iteh.ai/ catalogs standards/sist/b 19 ea78e-a161-4546-bd45-

2.2

387f4a904032/iso-6771-2007

component system

system whose temperature types and pressure classes are usually defined in the product specification
NOTE 1 The components are tested and qualified individually under each subsystem.
NOTE 2 The harmonization of temperature and pressure tolerances is accomplished in the component systems so that one product can be used in both systems, metric or imperial, and attain the same degree of performance of the subsystem.

3 Classification

3.1 Basic system

3.1.1 General

The pressure classes and temperature types for the basic systems are as specified in Tables 1 and 2 . No tolerance is permitted in the basic systems.

3.1.2 Pressure classes

Nominal system pressure classes for the basic systems shall be as specified in Table 1. The old pressure classes designated in Table 1 are the existing systems commonly used in the United States and Europe. The equivalent pressures as shown are mathematically converted from the basic systems for comparison only and should not be used in the basic systems.

Table 1 - Nominal system pressure classes for the basic systems

Pressure classes	Metric system			Imperial system		
	Old pressure classes	Pressu $\mathrm{kPa}(\mathrm{bar})^{\mathrm{a}}$ basic	values psi equivalent ${ }^{b}$	Old pressure classes	psi basic	values kPa equivalent ${ }^{\text {c }}$
A	A	4000 (40)	580	600	600	4137
B	B	10500 (105)	1522	1500	1500	10342
$\mathrm{H}^{\text {d }}$	-	$14000(140){ }^{\text {d }}$	2031	2000	2000	13790
C	C	16000 (160)	2321	-	$2500{ }^{\text {d }}$	17237
D	D	21000 (210)	3046	3000	3000	20684
E	E	28000 (280)	4061	4000	4000	27579
$J^{\text {d }}$	-	$35000(350){ }^{\text {d }}$	5076	5000	5000	34474
F	F	40000 (400)	5802	-	$6000{ }^{\text {d }}$	41368
G	G	50000 (500)	7252	-	$7000{ }^{\text {d }}$	48263
$\mathrm{K}^{\text {d }}$	-	$55000(550){ }^{\text {d }}$	7977	8000	8000	55158
$1 \mathrm{bar}=100 \mathrm{kPa}$. 1 kPa (kilopascal) $=0,1450381 \mathrm{psi}$ (pound-force per square inch). 1 psi (pound-force per square inch) $=6,89474 \mathrm{kPa}$ (kilopascal). Additional pressure classes for future application.						

3.1.3 Temperature types

iTeh STANDARD PREVIEW

(standards.iteh.ai)
Types of system operating temperature for the basic systems shall be as specified in Table 2. The old temperature types as shown in Table 2 are the existing systems commonly used by the United States and Europe. Some new temperature types are added in this revision for future application. The tolerances are not allowed in the basic systems.

387f4a904032/iso-6771-2007

Table 2 - Types of system operating temperature for basic systems

Temperature type	Metric system		Imperial system	
	Old temperature type	Temperature range ${ }^{\circ} \mathrm{C}$	Old temperature type	Temperature range ${ }^{\circ} \mathrm{F}$
07	I	-55 to 71	I	-65 to 160
09	-	-55 to 95	-	-65 to 200
13	II	-55 to 135	II	-65 to 275
20	III	-55 to 200	-	-65 to 400
23	-	-55 to 235	III	-65 to 460
32	IV	-55 to 320	-	-65 to 600
40	V	-55 to 400	-	-65 to 750
42	-	-55 to 425	-	-65 to 800
45	-	-55 to 450	-	-65 to 840
55	-	-55 to 550	-	-65 to 1020
65	VI	-55 to 650	-	-65 to 1200
73	-	-55 to 730	-	-65 to 1350
76	-	-55 to 760	-	-65 to 1400
NOTE Formula used in temperature conversion: $X{ }^{\circ} \mathrm{F}=32+9 / 5 \mathrm{Y}^{\circ} \mathrm{C}$ or $\mathrm{Y}^{\circ} \mathrm{C}=5 / 9\left(\mathrm{X}^{\circ} \mathrm{F}-32\right)$.				

3.2 Component system

3.2.1 Pressure classes

Nominal system pressure classes for the component systems shall be as specified in Table 3. The tolerance values as shown are to be used for conversion from one system to another. To qualify for both systems, the higher pressure shall be used.

Table 3 - Nominal system pressure classes for the component systems

Pressure classes	Metric system			Imperial system		
	Nominal pressure $\mathrm{kPa}(\mathrm{bar})^{\mathrm{a}, \mathrm{~b}}$	Harmonize tolerance kPa	upper value/ lower value kPa	Nominal pressure $p s i^{c}$	Harmonize tolerance psi	upper value/ lower value psi
A	4000 (40)	+137	$\begin{aligned} & 4137 \\ & 4000 \end{aligned}$	600	-20	$\begin{aligned} & 600 \\ & 580 \end{aligned}$
B	10500 (105)	-158	$\begin{aligned} & 10500 \\ & 10342 \end{aligned}$	1500	+23	$\begin{aligned} & 1523 \\ & 1500 \end{aligned}$
$\mathrm{H}^{\text {d }}$	14000 (140)	-211	$\begin{aligned} & 14000 \\ & 13789 \end{aligned}$	2000	+31	$\begin{aligned} & 2031 \\ & 2000 \end{aligned}$
C	$16000(160)$	$+1237$ (stan	$\begin{array}{\|c\|c\|} \hline \text { A. } 17237 \text { P } \\ \hline 16000 \end{array}$	2500	-179	$\begin{aligned} & 2500 \\ & 2321 \end{aligned}$
D	21000 (210)	-316	$\begin{array}{r} 21000 \\ 67720684 \end{array}$	3000	+46	$\begin{aligned} & 3046 \\ & 3000 \end{aligned}$
E	28000 (280)	$\begin{array}{r} \text { ds.iten.aitcatalog } \\ -427 \text { fla } \end{array}$	andardsiso $0001-20$ 27579	4000	+61	$\begin{aligned} & 4061 \\ & 4000 \end{aligned}$
$J^{\text {d }}$	35000 (350)	-526	$\begin{aligned} & 35000 \\ & 34474 \end{aligned}$	5000	+76	$\begin{aligned} & 5076 \\ & 5000 \end{aligned}$
F	40000 (400)	+1 368	$\begin{aligned} & 41368 \\ & 40000 \end{aligned}$	$6000^{\text {a }}$	-198	$\begin{aligned} & 6000 \\ & 5802 \end{aligned}$
G	50000 (500)	-1737	$\begin{aligned} & 50000 \\ & 48263 \end{aligned}$	$7000{ }^{\text {a }}$	+252	$\begin{aligned} & 7252 \\ & 7000 \end{aligned}$
$\mathrm{K}^{\text {d }}$	55000 (550)	+158	55158 55000	8000	-23	$\begin{aligned} & 8000 \\ & 7977 \end{aligned}$
a $\quad 1 \mathrm{bar}=100 \mathrm{kPa}$. b $\quad 1 \mathrm{kPa}$ (kilopascal) $=0,1450381 \mathrm{psi}$ (pound-force per square inch). c $\quad 1 \mathrm{psi}$ (pound-force per square inch) $=6,89474 \mathrm{kPa}$ (kilopascal). d Additional pressure classes for future application.						

3.2.2 Temperature types

The old temperature types as used in Table 4 are from the existing systems commonly used in the United States and Europe. The new temperature types are additional temperatures added in this revision for future broader application. To qualify for both systems, the higher temperature range shall be used.

Table 4 - Types of system operating temperature for component systems

Temperature type	Metric System				Imperial System			
	Old temperature type	Temperature range ${ }^{\circ} \mathrm{C}$	Lower temperature Field of tolerance	Upper temperature Field of tolerance	Old temperature type	Temperature range ${ }^{\circ} \mathrm{F}$	Lower temperature Field of tolerance	Upper temperature Field of tolerance
07	1	-55 to 71	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 71 \\ & 70 \end{aligned}$	1	-65 to 160	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 160 \\ & 158 \end{aligned}$
09	-	-55 to 95	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 95 \\ & 93 \end{aligned}$	-	-65 to 200	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 203 \\ & 200 \end{aligned}$
13	II	-55 to 135	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$	II	-65 to 275	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 275 \\ & 275 \end{aligned}$
20	III	-55 to 200	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 204 \\ & 200 \end{aligned}$	-	-65 to 400	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 400 \\ & 392 \end{aligned}$
23	-	-55 to 235	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 238 \\ & 235 \end{aligned}$	III	-65 to 460	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 460 \\ & 455 \end{aligned}$
32	IV	-55 to 320	$\ln _{-54}^{-55}$	N_{316}^{320}	DD PR	C-65 to 600	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 608 \\ & 600 \end{aligned}$
40	V	-55 to 400	$\begin{aligned} & \hline-55 t 2 \\ & -54 \end{aligned}$	$\begin{gathered} 1 \mathrm{Cl} 400^{\circ} \mathrm{d} \\ 399 \end{gathered}$	s.iteh.a	$-65 \text { to } 750$	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 752 \\ & 750 \end{aligned}$
42	-	-55 to 425	$\begin{array}{\|r} \text { dards. } 55 \\ -54 \quad 38 \end{array}$	$\begin{aligned} & \text { atalog } 427 \\ & \text { f4a } 42532 / 1 \end{aligned}$	$\begin{array}{\|l\|} 2007 \\ \text { Is/sist/byea78 } \\ \text {-6771-2007 } \end{array}$	-a 65 to $800{ }^{\text {b }}$	$\text { 45- } \begin{array}{r} -67 \\ -65 \end{array}$	$\begin{aligned} & 800 \\ & 797 \end{aligned}$
45	-	-55 to 450	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 450 \\ & 449 \end{aligned}$	-	-65 to 840	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 842 \\ & 840 \end{aligned}$
55	-	-55 to 550	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 550 \\ & 549 \end{aligned}$	-	-65 to 1020	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 1022 \\ & 1020 \end{aligned}$
65	VI	-55 to 650	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 650 \\ & 649 \end{aligned}$	-	-65 to 1200	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 1202 \\ & 1200 \end{aligned}$
73	-	-55 to 730	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 732 \\ & 730 \end{aligned}$	-	-65 to 1350	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 1350 \\ & 1346 \end{aligned}$
76	-	-55 to 760	$\begin{aligned} & -55 \\ & -54 \end{aligned}$	$\begin{aligned} & 760 \\ & 760 \end{aligned}$	-	-65 to 1400	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & 1400 \\ & 1400 \end{aligned}$
NOTE	Formula used in temperature conversion:$X^{\circ} \mathrm{F}=32+9 / 5 \mathrm{Y}^{\circ} \mathrm{C} \text { or } \mathrm{Y}{ }^{\circ} \mathrm{C}=5 / 9\left(\mathrm{X}^{\circ} \mathrm{F}-32\right) .$							

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6771:2007
https://standards.iteh.ai/catalog/standards/sist/b99ea78e-a161-4546-bd45-387f4a904032/iso-6771-2007

