

SLOVENSKI STANDARD SIST ISO 370:1999

01-marec-1999

Tolerirane mere - Pretvarjanje col v milimetre in obratno

Toleranced dimensions -- Conversion from inches into millimetres and vice versa

Dimensions tolérancées -- Conversion d'inches en millimètres et réciproquement

Ta slovenski standard je istoveten z: ISO 370:1975

SIST ISO 370:1999

https://standards.iteh.ai/catalog/standards/sist/caf75898-ff2e-4ca4-a1a1-c21bd667578b/sist-iso-370-1999

ICS:

17.040.10 Tolerance in ujemi Limits and fits

SIST ISO 370:1999 en

SIST ISO 370:1999

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 370:1999 https://standards.iteh.ai/catalog/standards/sist/caf75898-ff2e-4ca4-a1a1-c21bd667578b/sist-iso-370-1999

INTERNATIONAL STANDARD

37(

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION •МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Toleranced dimensions — Conversion from inches into millimetres and vice versa

Dimensions tolérancées - Conversion d'inches en millimètres et réciproquement

First edition – 1975-05-15 Teh STANDARD PREVIEW (standards.iteh.ai)

Descriptors: tables (data), conversion of units, dimensions, dimensional tolerances, metric system.

SIST ISO 370:1999 https://standards.iteh.ai/catalog/standards/sist/caf75898-ff2e-4ca4-a1a1c21bd667578b/sist-iso-370-1999

UDC 389.151/.152

Ref. No. ISO 370-1975 (E)

ISO 370-1975 (E)

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

Prior to 1972, the results of the work of the Technical Committees were published was ISO Recommendations; these documents are now in the process of being transformed into International Standards. As part of this process, Technical Committee ISO/TC 3 has reviewed ISO Recommendation R 370 and found it technically suitable for transformation. International Standard ISO 370 therefore replaces ISO Recommendation R 370-1964 to which it is technically identical.

ISO Recommendation R 370 was approved by the Member Bodies of the following countries:

Australia Greece Poland Austria Hungary **Portugal** Belgium India Romania Canada Iran Spain Chile Ireland Sweden Switzerland Czechoslovakia Italy Egypt, Arab Rep. of Turkey Japan Finland Netherlands United Kingdom France New Zealand Yugoslavia Norway Germany

The Member Bodies of the following countries expressed disapproval of the Recommendation on technical grounds:

U.S.A. U.S.S.R.

The Member Body of the following country disapproved the transformation of ISO/R 370 into an International Standard:

France

© International Organization for Standardization, 1975 ●

Toleranced dimensions — Conversion from inches into millimetres and vice versa

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies methods of conversion of toleranced dimensions from inches into millimetres and vice versa, which ensure, under the most suitable conditions. practical regard for interchangeability corresponding to the specified tolerances.

2 GENERALITIES

2.1 The use of the conversion factor 1 in = 25.4 mm (exactly)¹⁾ generally produces converted values containing more decimal places than are required for the desired (standards.iteh.ai) accuracy.

It is therefore necessary to round these values suitably, in accordance with the degree of accuracy of the toleranced 70:1999 dimensions, which depends sind the sind and tolerance specified.

- 2.2 Application of the rules for rounding, as given in tables 1 and 2, guarantees that even in the most unfavourable extreme cases neither of the two specified limits will be exceeded by more than 2 to 2,5 % of the value of the tolerance.
- 2.2.1 In method A, which is generally applicable, unless expressly indicated to the contrary, the rounding is effected to the nearest rounded value so that, on the average, the converted tolerances remain statistically identical with the original tolerances.

The limits converted by this method are considered acceptable for interchangeability and serve as a basis for inspection.

2.2.2 In method B, rounding is effected systematically towards the interior of the tolerance zone so that, on the average, the converted tolerances are smaller than the original tolerances.

Consequently this method should be employed only when, by special agreement, the original limits have to be respected absolutely (in particular, when components are to be inspected by means of original²⁾ gauges).

These two methods are specified in clauses 3 and 4, which relate respectively to the conversion of inches into millimetres and vice versa. They are supplemented by various special methods of application (see clause 5).

Finally, there are annexes containing conversion tables from inches into millimetres and vice versa, on the basis of the conversion factor 1 in = 25.4 mm.

3 CONVERSION OF INCHES INTO MILLIMETRES

- c21bd667578b/sist-iso-370-1999 a) For each dimension in inches, consider only its two limits, maximum and minimum.
 - b) Convert the corresponding two values exactly into millimetres by means of the conversion factor: 1 in = 25.4 mm (see annex A).
 - c) Round the results obtained in this way to the nearest rounded value as indicated in table 1, depending on the original tolerance in inches, i.e. on the difference between the two limits in inches.3)

The use of this method guarantees that even in the most unfavourable extreme cases neither of the two original limits will be exceeded by more than 2 % of the value of the tolerance.

3.2 Method B (by special agreement)

As method A, except that the rounding is not effected to the nearest rounded value, but towards the interior of the tolerance (i.e. to the next lower value for the upper limit and to the next higher value for the lower limit).

¹⁾ See ISO/R 31, Part I, No. 1-3.h.

²⁾ Gauges in the dimension to be converted.

³⁾ This amounts to rounding each of the two values converted into millimetres to a whole number of 1×10^{-n} mm, when the original tolerance in inches lies between 1×10^{-n} and less than 10×10^{-n} in.

ISO 370-1975 (E)

This method shall be employed only when the original limits have to be respected absolutely (in particular, when components are to be inspected by means of original gauges).

TABLE 1

Original tolerance in inches		Round off to a
not less than	and below	whole number of
in	in	mm
0.000 01	0.000 1	0,000 01
0.000 1	0.001	0,000 1
0.001	0.01	0,001
0.01	0.1	0,01
0.1	1	0,1

3.3 Example

Suppose that a dimension is expressed in inches as follows:

Conversion of the two limits into millimetres gives A

49,123 6 and 49,936 4

(standards iteh.ai)

As the tolerance equals 0.032 in and thus lies between 0.01 and 0.1 in, it is necessary, employing method A, to round SIST (Suppose) that a dimension is expressed in millimetres as

these values to the nearest 0,01 mm. The values in silvariance of these two limits are thus called 67578b/sist-iso-370-199 49,5 ± 0,4 (= 49,1, 49,9) 49,12 and 49,94

(Rounding towards the interior of the tolerance, according to method B, would give limits of 49,12 mm and 49,93 mm, i.e. a tolerance reduced to 0,80 mm instead of 0,82 mm, as given by method A.)

4 CONVERSION OF MILLIMETRES INTO INCHES

4.1 Method A (general rule)

- a) For each dimension in millimetres consider only its two limits, maximum and minimum.
- b) Convert the corresponding two values into inches by means of the table in annex B (based on the conversion factor: 1 mm = 1/25.4 in).
- c) Round the results obtained in this way to the nearest rounded value as indicated in table 2, depending on the original tolerance in millimetres, i.e. on the difference between the two limits in millimetres. 1)

The use of this method guarantees that even in the most unfavourable extreme cases neither of the two original limits will be exceeded by more than 2,5 % of the value of the tolerance.

4.2 Method B (by special agreement)

As method A, except that the rounding is not effected to the nearest rounded value, but towards the interior of the tolerance (i.e. to the next lower value for the upper limit and to the next higher value for the lower limit).

This method shall be employed only when the original limits have to be respected absolutely (in particular, when components are to be inspected by means of original gauges).

TABLE 2

Original tolerance in millimetres		Round off to a	
not less than	and below	whole number of	
mm	mm	in	
0,000 5	0,005	0.000 001	
0,005	0,05	0.000 01	
0,05	0,5	0.000 1	
0,5	5	0.001	
DD DDE	50	0.01	

Conversion of the two limits into inches gives

1.933 070 9 and 1.964 567 0

As the tolerance equals 0,8 mm, and thus lies between 0,5 and 5 mm, it is necessary, employing method A, to round these values to the nearest 0.001 in. The values in inches to be employed for these two limits are thus

1.933 and 1.965

(Rounding towards the interior of the tolerance, according to method B, would give limits of 1.934 in and 1.964 in, i.e. a tolerance, reduced to 0.030 in instead of 0.032 in as given by method A.)

5 SPECIAL METHODS OF APPLICATION

5.1 Rounding to the nearest rounded value

If the value to be rounded lies exactly half-way between the two nearest rounded values, it is preferable to take the even value.

¹⁾ For tolerances equal to at least 0,000 5 mm, this is the same as rounding each of the two values converted into inches to a whole number of $1 \times 10^{-(n+2)}$ in, when the original tolerance in millimetres lies between 5×10^{-n} and less than 50×10^{-n} mm.

5.2 Basic size and deviations

In order to avoid any accumulation of rounding errors, it is essential to convert the limits of size themselves, and in cases where they are indicated by a basic size and two deviations it is thus first of all necessary to calculate the limits.

However, (except when method B is specified), the manufacturer is free to make separate conversions, based on the original tolerance, of the basic size to the nearest rounded value and of each of the deviations towards the interior of the tolerance. This method, which gives the same guarantee of interchangeability as method A, may sometimes simplify the conversion procedure, but results in practice in smaller converted tolerances.

5.3 Limitation imposed by accuracy of measurement

If the degree of rounding given for the smallest tolerances in tables 1 and 2 is too fine for the available accuracy of measurement, the limits which are acceptable in regard to interchangeability should be determined separately in each case for those dimensions to which these tolerances apply.

(Example – If the accuracy of measurement is limited to 0,001 mm, the study of the particular case shows that the values converted from $1\pm0.000\,5$ in can be rounded to 25,413 mm and 25,387 mm instead of 25,412 7 mm and 25,387 3 mm without any disadvantage, since neither of the two original limits is exceeded by more than 1,2 % of the tolerance).

5.4 Positional tolerance https://standards.iteh.ai/catalog/standards

If the dimensioning consists solely of a positional tolerance round a point defined by a non-toleranced reference dimension, the reference dimension should be separately converted to the nearest rounded value and each of the two deviations of the tolerance should be separately converted towards the interior of the latter, all these conversions depending on the original tolerance.

5.5 Toleranced dimension associated with a non-toleranced reference dimension

If the toleranced dimension is situated in a plane the position of which is given by a non-toleranced reference dimension (dimensioning of certain conical surfaces, for example):

- a) round the reference dimension arbitrarily, to the nearest rounded value;
- b) calculate exactly, in the new unit of measurement, the maximum and minimum limits of the specified tolerance zone, in the plane defined by the new reference dimension obtained in this way;
- c) round these limits in conformity with this International Standard.

(Example - Suppose that a cone of taper 0,05 has a diameter 1 ± 0.002 in in a reference plane defined by the non-toleranced positional dimension 0.93 in. By virtue of the taper of the cone, the limits of the tolerance zone depend on the position of the reference plane. if Consequently, we round the dimension 0.93 in = 23,622 mm to 23,6 mm, i.e. a reduction of 0,022 mm, each of the two original limits, when converted exactly on into millimetres, should be corrected by $0.022 \text{ mm} \times 0.05 = 0.001 \text{ 1 mm}$ in the appropriate sense before being rounded).

ISO 370-1975 (E)

ANNEX A

TABLES FOR CONVERSION FROM INCHES INTO MILLIMETRES¹⁾

A.1 INCHES IN FRACTIONS

	in	mm		in	mm
1/64	0.015 625	0,396 875	33/64	0.515 625	13,096 875
1/32	0.031 250	0,793 750	17/32	0.531 250	13,493 750
3/64	0.046 875	1,190 625	35/64	0.546 875	13,890 625
1/16	0.062 500	1,587 500	9/16	0.562 500	14,287 500
5/64	0.078 125	1,984 375	37/64	0.578 125	14,684 375
3/32	0.093 750	2,381 250	19/32	0.593 750	15,081 250
7/64	0.109 375	2,778 125	39/64	0.609 375	15,478 125
1/8	0.125 000	3,175 000	5/8	0.625 000	15,875 000
9/64 5/32 11/64	0.140 625 0.156 250 h 0.171 875	S 3,571 875 3,968 750DA 4,365 625 (Standal	R _{1/32} I d _{3/64} I	0.640 625 0.656 250 0.671 875	16,271 875 16,668 750 17,065 625
3/16 13/64 7/32 15/64	0.187 500 0.203 125 0.218 750 0.234 375	4,762 500 5,159 375 T IS 5,556 250 ds.its,953 125 g/sta c21bd667578	11/ ₁₆ O 3 ⁴⁵ / ₆₄ 999 ndar ₄ 7/ ₆₄ 32ist/c /sist-150-37	0.687 500 0.703 125 0.718 750 af75 0.734 375 ca4	17,462 500 17,859 375 18,256 250 alal 18,653 125
1/4	0.250 000	6,350 000	3/4 49/64 25/32 51/64	0.750 000	19,050 000
17/64	0.265 625	6,746 875		0.765 625	19,446 875
9/32	0.281 250	7,143 750		0.781 250	19,843 750
19/64	0.296 875	7,540 625		0.796 875	20,240 625
⁵ / ₁₆ ²¹ / ₆₄	0.312 500	7,937 500	13/16	0.812 500	20,637 500
	0.328 125	8,334 375	53/64	0.828 125	21,034 375
11/ ₃₂ 23/ ₆₄ 3/ ₈	0.343 750	8,731 250	27/ ₃₂	0.843 750	21,431 250
	0.359 375	9,128 125	55/ ₆₄	0.859 375	21,828 125
	0.375 000	9,525 000	7/ ₈	0.875 000	22,225 000
25/64	0.390 625	9,921 875	57/64	0.890 625	22,621 875
13/32	0.406 250	10,318 750	29/32	0.906 250	23,018 750
27/64	0.421 875	10,715 625	59/64	0.921 875	23,415 625
7/16 29/64 15/32	0.437 500	11,112 500	15/16	0.937 500	23,812 500
	0.453 125	11,509 375	61/64	0.953 125	24,209 375
	0.468 750	11,906 250	31/ ₃₂	0.968 750	24,606 250
³¹ / ₆₄ ¹ / ₂	0.484 375	12,303 125	63/64	0.984 375	25,003 125
	0.500 000	12,700 000	1	1.000 000	25,400 000

¹⁾ On the basis of the conversion factor 1 in = 25,4 mm. (All the values in the tables in this annex are exact.)

in

mm

A.2 INCHES IN DECIMALS AND INCHES

in	mm
0.001	0,0254
0.002	0,0508
0.003	0,0762
0.004	0,1016
0.005	0,1270
0.006	0,1524
0.007	0,1778
0.008	0,2032
0.009	0,2286

STANDARD (standards.i

SIST ISO 370:1

0,762 0.04 1,016 1,016 httpq://pyondards.iteh.ai/catalog/standards/s 1,524 c21bd667578b/sist-iso 1,778 2,032 2,286 0.05 0.06 0.07 0.08 0.09

0.01 0.02 0.03 imeh

0,254 0,508

in	mm
0.1	2,54
0.2	5,08
0.3	7,62
0.4	10,16
0.5	12,70
0.6	15,24
0.7	17,78
0.8	20,32
0.9	22,86

1	25,4	51	1295,4
2 3	50,8	52	1320,8
	76,2	53	1346,2
4	101,6	54	1371,6
5	127,0	55	1397,0
6	152,4	56 57	1422,4
7	177,8		1447,8
8	203,2	58	1473,2
9	228,6	58	1498,6
10	254,0	60	1524,0
11	279,4		1549,4
12	304,8	62	1574,8
13	330,2		1600,2
14	355,6	64	1625,6
15	381,0	65	1651,0
16 I	406,4	66	1676,4
17	431,8	67	1701,8
tesh	ai457,2	68	1727.2
	482,6	69	1752,6
20 999	508,0	70	1778,0
21	533,4	71	1803,4
st/22f7	5898 <u>558</u> 584ca	4- 3/2 a1	1828,8
-3723-1	999 584,2	73	1854,2
24	609,6	74	1879,6
25	635,0	75	1905,0
26	660,4	76	1930,4
27	685,8	77	1955,8
28 29	711,2	78	1981,2
	736,6	79	2006,6
30	762,0 787,4	80	2032,0 2057,4
31 32 33	812,8 838,2	81 82 83	2082,8 2108,2
34	863,6	84	2133,6
35	889,0	85	2159,0
36	914,4	86	2184,4
37	939,8	87	2209,8
38	965,2	88	2235,2
39	990,6	89	2260,6
40	1016,0	90	2286,0
41	1041,4	91	2311,4
42	1066,8	92	2336,8
43	1092,2	93	2362,2
44 45	1117,6	94	2387,6
	1143,0	95	2413,0
46	1168,4	96	2438,4
47 48 49	1193,8 1219,2	97 98	2463,8 2489,2
50	1244,6	99	2514,6
	1270,0	100	2540,0

in

mm