INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION -MEЖДУНАРОДНАЯ OPГAНИЗАЦИЯ ПО СТАНДАРTИЗALИИ•ORGANISATION INTERNATIONALE DE NORMALISATION

Laboratory glassware - Principles of design and construction of volumetric glassware

Verrerie de laboratoire - Principes de conception et de construction de la verrerie volumétrique

First edition - 1978-01-15
TTeh STANDARID PREVIEW
(standards.iteh.ai)
ISO 384:1978
httpss//standards.iteh.ai/catalog/standards/sist/0b3ccaea-b15e-44a2-8b58-
48cef7ebe7b7/iso-384-1978

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 384° wash developed by Technical committee H W ISO/TC 48, Laboratory glassware and related apparatus, and was circulated to the member bodies in February 1976.

It has been approved by the member bodies of the following countries:

	hiths://standards.iteh.ai/catalog/tandards/sis//0b3ccaea-b15e-44a2-8b58-	
Australia	Hungary	Suth Arica, Rep, of
Austria	India	Spain
Belgium	Israel	Turkey
Canada	Italy	United Kingdom
Chile	Mexico	U.S.A.
Czechoslovakia	Netherlands	U.S.S.R.
France	Poland	
Germany	Romania	

No member body expressed disapproval of the document.
This International Standard cancels and replaces ISO Recommendation R 384-1964, of which it constitutes a technical revision.
CONTENTS Page
1 Scope and field of application 1
2 References 1
3 Unit of volume, and reference temperature 1
4 Volumetric accuiacy 1
5 Methods of verification and use 2
6 Construction 2
7 Linear dimensions 3
iTeln $\mathrm{S}^{7}{ }^{8}$ Graduation lines . .P.R.F.I.I.E.W. 4
(9tallas aras.iteliòi) 4
10 Figuring of graduation lines. 6
11 Inscriptions84.1978 7
https:/standards.itehai/catalog/standards/sist/0 Visibility of graduation lines, figures and inscriptions 7
13 Colour coding 7
Annexes
A Limits of volumetric error in relation to capacity. 8
B Limits of volumetric error in relation to diameter at the meniscus. 10
C The inter-relation between standard deviation, limit of volumetric error, and line thickness (also line spacing on articles having a scale) 13

iTeh STANDARD PREVIEW This pagasindentionnallytefthlagki)

ISO 384:1978
https://standards.iteh.ai/catalog/standards/sist/0b3ccaea-b15e-44a2-8b58-48cef7ebe7b7/iso-384-1978

Laboratory glassware - Principles of design and construction of volumetric glassware

1 SCOPE AND FIELD OF APPLICATION

This International Standard sets out principles for drawing up specifications for articles of volumetric glassware.

2 REFERENCES

ISO 383, Laboratory glassware - Interchangeable conical ground joints.
ISO 1769, Laboratory glasswareh-Sipettes Colour 4.2 Rimits of volumetric error shall be specified for each coding.
ISO 4791/II, Laboratory glassware Part II. ${ }^{1)}$

3 UNIT OF VOLUME, AND REFERENCE TEMPERATURE

3.1 Unit of volume

The unit of volume shall be the cubic centimetre $\left(\mathrm{cm}^{3}\right)$ or, in special cases, the cubic decimetre $\left(\mathrm{dm}^{3}\right)$ or cubic millimetre $\left(\mathrm{mm}^{3}\right)$.

NOTE - The term millilitre (ml) is commonly used as a special name for the cubic centimetre (cm^{3}) and, similarly the litre (I) for the cubic decimetre $\left(\mathrm{dm}^{3}\right)$ and the microlitre $(\mu \mathrm{l})$ for the cubic millimetre (mm^{3}), in accordance with the International System of units (SI).

3.2 Reference temperature

The standard reference temperature, i.e. the temperature at which the article of volumetric glassware is intended to contain or deliver its nominal volume (nominal capacity), shall be $20^{\circ} \mathrm{C}$.

NOTE - When it is necessary in tropical countries to work at an ambient temperature considerably above $20^{\circ} \mathrm{C}$, and these countries do not wish to use the standard reference temperature of $20^{\circ} \mathrm{C}$, it is recommended that they adopt a temperature of $27^{\circ} \mathrm{C}$.

4 VOLUMETRIC ACCURACY

4.1 In a specification where two classes of accuracy are required,

- the higher grade shall be designated "class A";
- the lower grade shall be designated "class B". type of article having regard to the method and purpose af use and the class of accuracy.

ISO 384:1978
4.3 The numerical values of limits of volumetric error for articles of volumetric glassware for general purposes shall be chosen from the series $10-12-15-20-25-$ $30-40-50-60-80$, or a suitable decimal multiple thereof. ${ }^{2)}$
4.4 The limits of volumetric error specified for a series of sizes of an article should provide a reasonably uniform progression in relation to capacity when plotted on a logarithmic graph as shown in annex A. Such a graph should be included as an annex to all specifications in which a series of three or more sizes of an article is specified.
4.5 Where two classes of accuracy are specified, then the limits of volumetric error permitted for class B should, in general, be approximately twice those permitted for class A.
4.6 For all articles having a scale, the maximum permitted volumetric error for either class of accuracy shall not exceed the volume equivalent of the smallest scale division.

[^0]4.7 Where two classes of accuracy are specified, the class A limit of volumetric error specified for any article shall not be smaller than that calculated from the maximum permitted diameter at the relevant graduation line by the formulae detailed in annex B; the corresponding class B limit shall be derived in accordance with 4.5.

Where only one class of accuracy is specified, the limit of volumetric error specified for any article shall be similarly determined, on the basis of a preliminary decision as to whether class A or class B accuracy is appropriate to the article in question.

A nomograph, plotted on a logarithmic scale as shown in annex B, should be included, as an annex, in all specifications for articles of volumetric glassware.
4.8 The limit of volumetric error specified for any article designed for delivery shall also be not less than four times the standard deviation (RMS) determined experimentally by an experienced operative from a series of at least twenty replicable determinations of delivered capacity on the same article, carried out strictly in accordance with the method specified for that article.

5 methods of verification ádduses TAND

5.1 The method of verification should be clearly specified a for each article of volumetric glassware.
5.2 Any difference between the method of verification ISC and the method of use shall be clearly/ indicated. iteh.ai/catalog/stanc
5.3 Delivery times and, where applicable, waiting times for all articles intended for delivery of a liquid shall be specified. ${ }^{1)}$
5.4 Setting of the meniscus shall be performed by one of the two methods detailed below. Wherever practicable, the meniscus should descend to the position of setting.
a) The meniscus is set so that the plane of the upper edge of the graduation line is horizontally tangential to the lowest point of the meniscus, the line of sight being in the same plane. In the case of a mercury meniscus, however, the highest point of the meniscus is set to the lower edge of the graduation line.
b) The meniscus is set so that the plane of the centre of the graduation line is horizontally tangential to the lowest point of the meniscus. The eye is raised towards the plane and observes the front and back portions of the line apparently meeting the lowest point

6.2 Shape

All articles shall be of a shape which will facilitate emptying and drainage, and should preferably be of circular cros-s-section.
simultaneously. In the case of a mercury meniscus, the eye is lowered towards the plane of the centre of the graduation line.

NOTE - The difference between meniscus positions resulting from the alternative methods of setting is the volume equivalent to one-half the thickness of the graduation line. In the case of articles where the capacity is read as the difference between two meniscus readings (for example on a burette) then no error results if the article is manufactured using one method and is later used by the other method. Even in most unfavourable cases of singlemark articles (for example large flasks), when working to the highest attainable accuracy, the difference resulting from use of the two methods is unlikely to exceed 30% of the class A limit of error, and a correction can be calculated where necessary.
5.5 When the article is used with opaque wetting liquids, the horizontal line of sight shall be taken through the upper edge of the meniscus, and where necessary an appropriate correction shall be applied.

6 CONSTRUCTION

6.1 Material

Volumetric glassware shall be constructed of glass of suitable chemical and thermal properties. It shall be as free as possible from visible defects and shall be reasonably ree from internal stress.

6.3 Capacity

6.3.1 The numerical values of capacity of articles of volumetric glassware for general purposes should preferably be chosen from the series $10-20-25-50$, or a decimal multiple or submultiple thereof.
6.3.2 The numerical value of the volume equivalents of the smallest division on articles having a scale shall be chosen from the series $1-2-5$, or a decimal multiple or submultiple thereof.
6.3.3 In the case of a special purpose article of volumetric glassware which is to be graduated for direct reading of capacity when used with a specific liquid other than water, the specification should also indicate the corresponding capacity when used with pure water so that the latter can be used for verification.

[^1]
6.4 Stability

Vessels provided with a flat base shall stand firmly thereon without rocking when placed on a level surface and, unless specified otherwise, the axis of the graduated portion of the vessel should be vertical. Wherever practicable, vessels shall not topple when placed empty on a surface inclined at an angle to the horizontal to be specified for each article.

Vessels provided with a base which is not circular shall meet this requirement in all directions.

6.5 Delivery jets

6.5.1 Delivery jets should be strongly constructed with a smooth and gradual taper without any sudden constriction at the orifice. ${ }^{1)}$
6.5.2 The end of the jet shall be finished by one of the methods listed below in order of preference :
a) smoothly ground square with the axis, slightly bevelled on the outside and fire-polished;
b) smoothly ground square with the axis and slightly bevelled on the outside;
c) cut square with the axis and fire-polished.

A fire-polished finish reduces the danger of chipping in use, but should not result in constriction, as indicated in 6.5.1 or in 48cef7ebe7b7/iso-384-1
6.5.3 The jet should form an integral part of an article intended for class A and should preferably form an integral part of an article intended for class B.

6.6 Stoppers

6.6.1 Glass stoppers should preferably be ground so as to be interchangeable, in which case the ground portions shall comply with ISO 383. If individually fitted, they shall be well ground so as to prevent leakage, preferably with a taper of approximately $1 / 10$.
6.6.2 Stoppers of a suitably inert plastics material may be permitted as an alternative to glass. In such cases, the glass socket into which the stopper fits should preferably comply with ISO 383.

6.7 Stopcocks or similar devices

6.7.1 Stopcocks and similar devices shall be designed to permit smooth and precise control of outflow and to prevent a rate of leakage greater than that allowed in the specification for the article.
6.7.2 Stopcocks and similar devices shall be made from glass or from suitable inert plastics material.
6.7.3 All-glass stopcocks shall have the key and barrel finely ground preferably to a taper of $1 / 10$ and shall comply with appropriate national or international specifications.
6.7.4 Glass stopcock barrels to receive plastics keys shall be polished internally.
6.7.5 Stopcock components may be fitted with suitable retaining devices.

7 LINEAR DIMENSIONS

7.1 Linear dimensional requirements shall be specified for all articles of volumetric glassware in such a way as to ensure that: W
W) athe article is convenient and satisfactory for its intended use;
b) in a series of sizes of an article, unnecessary 3 inconsistencies in shape and proportions can be avoided;
c) a limitation is placed on the maximum internal diameter at the graduation line or lines (see 4.7 and annex B); this limitation may be a direct limitation on diameter or an indirect one by a minimum limitation on scale length;
d) the requirement for spacing of graduation lines specified in 9.1.2 is achieved;
e) the stability requirements of 6.4 can be achieved. ${ }^{2)}$

Linear dimensions shall be specified in millimetres.
7.2 Dimensional requirements should not be more restrictive than is necessary to achieve the aims listed in 7.1.
7.3 In order to permit maximum freedom in manufacture within the restrictions imposed by 7.1, dimensions may be divided into two categories of importance and classified as "essential dimensions" and "guidance dimensions".

[^2]7.4 In a specification where these two categories of dimensions are used, the requirements of 7.1 c) and d) shall be included as essential dimensions.
7.5 The requirements of 7.1 b) can in many cases be ensured sufficiently by guidance dimensions.
7.6 Essential dimensions shall be expressed in one of the following ways, whichever is the most suitable or convenient ${ }^{1)}$:
a) a median figure with \pm tolerance;
b) a maximum and minimum figure;
c) a maximum or a minimum figure, if the other limit is unimportant or is controlled by other factors in the specification.
7.7 A dual limitation on dimensional tolerances should be avoided wherever possible; for example, if an overall length is limited by the methods shown in 7.6 a) or 7.6 b) and there are two or more additive components of this length to be specified, then

- either the tolerance on overall length should be sufficient to accommodate the additive tolerance of all the components,
article. On articles provided with a flat base, the graduation lines shall therefore lie in planes parallel to the base.
8.5 In general, graduation lines should be confined to cylindrical portions of an article's cross-section and should preferably be situated not less than 10 mm from any change in diameter. In special circumstances, preferably for class B articles only, graduation lines may be provided on a parallel side portion of non-circular cross-section or on a conical or tapered portion of the article.
8.6 On articles not having a scale, all graduation lines should extend completely round the circumference of the article, except that a gap, not exceeding 10% of the circumference, may be permitted. In the case of an article which is restricted as to the normal direction of viewing in use, this gap should be at the right or left of the normal direction of view.

9 SCALES

9.1 Spacing of graduation lines

9.1.1 There should be no evident irregularity in the spacing of graduation lines (except in special cases where the scale is on a conical or tapered portion of the article and a change of subdivision takes place).

- or the least important component shoufd be left al as.iteh. al)
undimensioned so that it is controlled only by the difference between overall length and the total length of the other components.
https://standards.iteh.ai/catalog/stand
9.1.2 The minimum distance between the centres of adjacent graduation lines shall be not less, in relation to diameter, than that calculated from the formula
7.8 Guidance dimensions shall be expressed as median figures without tolerance, or as minima or maxima. If both limits are considered necessary, then the dimension in question shall be classed as an essential dimension.

8 GRADUATION LINES

8.1 Graduation lines shall be clean, permanent lines of uniform thickness.
8.2 A maximum thickness of graduation line shall be specified appropriate to the particular article and its class of accuracy. This thickness shall not exceed one-half of the linear equivalent of the limit of volumetric error (see annex C).
8.3 On articles having a scale, the specified maximum thickness of lines shall not exceed one-quarter of the minimum distance between centres of adjacent lines (see also annex C).
8.4 All graduation lines shall lie in planes at right angles to the longitudinal axis of the graduated portion of the
is $(0,8+10,02 D) \mathrm{mm}$
where D is the maximum permitted internal diameter of the tube in millimetres (see also annex C).

9.2 Length of graduation lines (see figure 2)

9.2.1 On articles of circular cross-section having a scale, the length of the graduation lines shall be varied so as to be clearly distinguishable and shall be in accordance with the provisions of $9.2 .2,9.2 .3$ or 9.2.4.

9.2.2 Graduation pattern I

a) The length of the short lines should be approximately, but not less than, 50% of the circumference of the article.
b) The length of the medium lines should be approximately 65% of the circumference of the article and should extend symmetrically at each end beyond the end of the short lines.
c) The long lines should extend completely round the circumference of the article, but a gap, not exceeding 10% of the circumference, may be permitted (see 8.6).

[^3]
9.2.3 Graduation pattern //

a) The length of the short lines should be not less than 10% and not more than 20% of the circumference of the article.
b) The length of the medium lines should be approximately 1,5 times the length of the short lines and should extend symmetrically at each end beyond the end of the short lines.
c) The long lines should extend completely round the circumference of the article, but a gap, not exceeding 10% of the circumference, may be permitted (see 8.6).

9.2.4 Graduation pattern I/I

a) The length of the short lines should be not less than 10% and not more than 20% of the circumference of the article.
b) The length of the medium lines should be approximately 1,5 times the length of the short lines and should extend symmetrically at each end beyond the ends of the short lines.
c) The length of the long-lines should be not less than twice the length of the shorflines and should extend symmetrically at each end beyond the ends of the short and medium lines.
9.2.5 In special cases where scales are required on noncircular cross-section or conical or tapered portions of an article, the requirements of $9.2 .2,9.2 .3$ or 9.2 .4 should be appropriately modified.

9.3 Sequence of graduation lines (see figure 1)

9.3.1 On articles in which the volume equivalent of the smallest scale division is 1 ml (or a decimal multiple or submultiple thereof) :
a) every tenth graduation line is a long line;
b) there is a medium line midway between two consecutive long lines;
c) there are four short lines between consecutive medium and long lines.
9.3.2 On articles in which the volume equivalent of the smallest scale division is 2 ml (or a decimal multiple or submultiple thereof) :
D) Revery fifth graduation line is a long line;
b) there are four short lines between two consecutive (Stancarenollenglines.

Graduation pattern I (see 9.2.2)

Graduation pattern II (see 9.2.3)

Graduation pattern III (see 9.2.4)

9.3.3 On articles in which the volume equivalent of the smallest scale division is 5 ml (or a decimal multiple or submultiple thereof) :
a) every tenth graduation line is a long line;
b) there are four medium lines equally spaced between two consecutive long lines;
c) there is one short line between two consecutive medium lines or between consecutive medium and long lines.

9.4 Position of graduation lines (see figure 2)

9.4.1 On articles graduated according to pattern I with vertical scales in accordance with 9.2.2, the ends of the short graduation lines shall lie on an imaginary vertical line down the centre of the front of the article, the lines themselves extending preferably to the left when the article is viewed from the front in the position of normal use.
9.4.2 On articles graduated according to pattern II or III, with vertical scales in accordance with 9.2.3 and 9.2.4, the mid-points of the short and medium graduation lines shall lie on an imaginary vertical lineedown the centre of the front of the article, when the article is viewed from the front in the position of normal use.
10.2 On articles having two or three graduation lines, the numbers representing nominal capacity need not be adjacent to the lines to which they relate, if some other more suitable method of identification is used (for example as covered by the note to 11.1 d)).
10.3 On articles having one principal graduation line and a small number of subsidiary lines, the number representing the principal capacity may be included with the other inscriptions as in 10.1 provided that the subsidiary graduation lines are suitably identified.

10.4 On articles having a scale :

a) the scale shall be so figured as to enable the value corresponding to each graduation line to be readily identified;
b) the scale should normally have only one set of figures;
c) at least every tenth line shall be figured;
d) figures shall be confined to long graduation lines and should be placed immediately above the line and slightly to the right of the adjacent shorter graduationlines: / IEW
NOTE-Where long lines complying with 9.2 .3 are used (i.e.
not extending completely round the article), an alternative scheme of figuring may be permitted, in which the figure is placed slightly to the right of the end of the long line in such : a way that an extension of the line would bisect it.

10 FIGURING OF GRADUATION LINES

10.1 On articles with one graduation line, the number representing nominal capacity may be included with the other inscriptions and need not be adjacent to the graduation line.
el 38 wheregit is necessary in special cases to use a number relating to a medium or short graduation line, the number should be placed slightly to the right of the end of the line in such a way that an extension of the line would bisect it.

11 INSCRIPTIONS

11.1 The following inscriptions shall be permanently marked on each article :
a) a number indicating the nominal capacity (except for articles with graduation lines figured to indicate capacity)
b) the symbol " $\mathrm{cm}^{3 "}$ or the symbol " ml^{\prime} " to indicate the unit in terms of which the article is graduated (see note to 3.1);
c) the inscription " $20^{\circ} \mathrm{C}$ " to indicate the standard reference temperature;

NOTE - Where, exceptionally, the reference temperature is $27^{\circ} \mathrm{C}$, this value should be substituted for $20^{\circ} \mathrm{C}$.
d) the letters "In" to indicate that the article has been constructed to contain its indicated capacity, or the letters "Ex" to indicate that the article has been constructed to deliver its indicated capacity;

NOTE - Where the article has graduation lines intended to indicate both content and delivery, the letters shall be close to the line to which they refer.
e) the inscription " A " or " B " to indicate the class of e) the inscription " A " or " B " to indicate the class of 015 to 20 mm from the top of the suction tube.
accuracy to which the article is intended to belong;
f) on articles intended for use with a specified waiting if NOTE In national standards, provision may be made for time, the waiting time shall be inscribed, for example :
" $E x+15 \mathrm{~s}^{\prime \prime}$;
(for example, "Ausblasen", "Inflatur", "À souffler").
c) in the case of an article of volumetric glassware which has been specially constructed for direct reading of capacity when used with a specific liquid other than water, the name or chemical formula of the liquid in question;
d) the limit of volumetric error, valid for the article, for example $\pm .$. ml.
11.3 The following inscriptions shall also be marked on articles to which they apply :
a) in the case of an article made from a glass having a coefficient of (cubical) thermal expansion outside the range $25 \times 10^{-6} \mathrm{~K}^{-1}$ to $30 \times 10^{-6} \mathrm{~K}^{-1}$ (i.e. outside the range of the usual types of soda-lime glass), an indication to this effect, so that for certification purposes the appropriate correction table may be selected; this requirement will be met by the manufacturer's name or trade mark if the coefficient of thermal expansion is published in the corresponding catalogues;
b) in the case of pipettes constructed for delivery to include the last drop being blown out of the jet, the word BLOWOUT and/or a white enameled (or etched or sandblasted) band, 3 to 5 mm wide, approximately

ISO 384:1978

g) the maker's or vendor's/same orsmark ri/catalog/standards/sist/0b3ccaea-b15e-44a2-8b58-
11.2 Such of the following additional inscriptions as are required by national regulations should be marked on class A articles intended for official verification or certification. They should preferably be marked on all class A articles and may be also used, if desired, on class B articles :
a) an identification number; the same number shall be marked on the handles of stopcocks, if required, and also on stoppers which are not interchangeable; if interchangeable glass stoppers are provided, then the stopper and neck should be marked with the joint size designation in accordance with ISO 383;
b) on articles intended for delivery through a jet, the time in seconds for unrestricted delivery of the contents, using pure water;

12^{97} VISIBILITY OF GRADUATION LINES, FIGURES AND INSCRIPTIONS

12.1 All figures and inscriptions shall be of such size and form as to be clearly legible under normal conditions of use.
12.2 All graduation lines, figures and inscriptions shall be clearly visible and permanent.

13 COLOUR CODING

In the case of pipettes, there should be a requirement that colour coding, if used, must comply with the requirements of ISO 1769.

[^0]: 1) In preparation.
 2) This is the $R^{\prime \prime} 10$ series of preferred numbers and has been adopted because decimal sub-multiples of some of the unrounded numbers, for example 31,5 , would appear to imply a degree of precision which is not intended and which could not be measured in practice.
[^1]: 1) See definitions given in ISO $4791 /$ II.
[^2]: 1) A reason for not permitting a sudden constriction at the orifice is that such a shape could conceal the fact that the jet had been damaged, cut back and re-fired. Following such treatment the volume delivered by the article could have been altered beyond the specified limits of volumetric error without any visible evidence of this fact.
 2) The stability requirement is controlled by the angle of displacement from the vertical at which the centre of gravity comes vertically above the edge of the base. The height of the centre of gravity is not only a function of the specified dimensions but is also affected by the distribution of mass in the various parts of the article. It is, however, important to ensure that the specified dimensions do not make it difficult or impossible to achieve the required stability.
[^3]: 1) The choice between 7.6 a) and 7.6 b) will often be guided by economy or simplicity of figures and sometimes by the avoidance of an implication of greater precision than is intended.
