
**Road vehicles — Connection interface
for pyrotechnic devices, two-way
and three-way connections —**

**Part 2:
Test methods and general performance
requirements**

iTeh STANDARD PREVIEW

*Véhicules routiers — Interface de raccordement pour dispositifs
pyrotechniques, deux voies et trois voies —*

Partie 2: Méthodes d'essai et exigences des performances générales

[https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-
8632e8f7d036/iso-19072-2-2007](https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007)

Reference number
ISO 19072-2:2007(E)

© ISO 2007

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[ISO 19072-2:2007](#)

<https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Functional characteristics of mated connectors	2
4.1 General	2
4.2 Visual examination	2
4.3 Mating and unmating	2
4.4 Resistance to tensile and compressive force between the connector and squib holder equipped with initiator and retainer	2
4.5 Mechanical strength of the retainer in the squib holder	4
4.6 Combination of temperature/humidity/vibration	5
4.7 Coding	8
4.8 Polarization	8
4.9 Contact resistance (voltage drop), millivolt test	8
4.10 Insulation resistance	10
4.11 Withstand voltage	10
4.12 Thermal ageing	10
4.13 Opening and closing of the short-circuit	10
4.14 Short-circuit resistance	12
4.15 Rapid change of temperature (thermal shock)	12
4.16 Chemical fluids	12
5 Test sequences	12
Annex A (normative) Sealed variant of the pyrotechnic device/initiator harness connector assembly	14
Annex B (normative) Two-way (without ground) variant of the pyrotechnic device/initiator harness connector assembly	16
Annex C (normative) Variant without retainer of the pyrotechnic device/initiator harness connector assembly	18
Bibliography	19

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19072-2 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 3, *Electrical and electronic equipment*.

iTeh STANDARD PREVIEW

ISO 19072 consists of the following parts, under the general title *Road vehicles — Connection interface for pyrotechnic devices, two-way and three-way connections*:

- *Part 1: Pocket interface definition* [ISO 19072-2:2007](#)
- *Part 2: Test methods and general performance requirements* <https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

Introduction

Road vehicles integrate an increasing number of pyrotechnic devices contributing to occupant safety in vehicles, e.g. frontal and side air bag, safety belt pretensioner.

To build the complete system providing the function requires a supply of various components from several different equipment makers. Vehicle manufacturers need to define a common specification to ensure that connectors designed and produced for the various equipment makers meet the same performances criteria and requirements.

In the current design of this vehicle equipment, three areas of connection have been identified:

- connection between the pyrotechnic device (e.g. initiator) and the harness connector;
- connection between the tab holder and the clip holder of the harness connector;
- connection between the harness connector and the electronic control module.

This part of ISO 19072 deals with the connection between the pyrotechnic device and the harness connector, which is the only connection that can be standardized. Due to the location of the safety device in the vehicle, the connector design could be right angle or straight.

Annex A defines a sealed option for the pyrotechnic device/initiator harness connector assembly.

Annex B defines a two-way (without ground) variant of the pyrotechnic device/initiator harness connector assembly.

<https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

Annex C defines a variant without retainer of the pyrotechnic device/initiator harness connector assembly.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[ISO 19072-2:2007](#)

<https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

Road vehicles — Connection interface for pyrotechnic devices, two-way and three-way connections —

Part 2: Test methods and general performance requirements

1 Scope

This part of ISO 19072 defines the performance criteria and requirements of a three-way connection interface, including ground connection, linking the pyrotechnic device and harness connector built into a road vehicle.

Performance criteria and requirements are also defined for a sealed variant of the pyrotechnic device/initiator harness connector assembly, and for a two-way (without ground) variant of the pyrotechnic device/initiator harness connector assembly.

iTeh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8092-2, *Road vehicles — Connections for on-board electrical wiring harnesses — Part 2: Definitions, test methods and general performance requirements*

ISO 20653, *Road vehicles — Degrees of protection (IP-Code) — Protection of electrical equipment against foreign objects, water and access*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8092-2 and the following apply.

3.1

connector

assembly used to connect several conductors together or a single conductor to an appliance

NOTE A male (female) connector is a housing containing male (female) contacts and accessory items. A male connector can be permanently fixed to a wiring harness or to an appliance, e.g. an electronic control unit (ECU). A female connector is generally permanently fixed to a wiring harness.

3.2

housing

connector without its contacts

3.3

locking device

mechanical system preventing unmating of a connector, which can be released through a deliberate action

3.4

retainer

ring holding a shunt and providing coding and electrical insulation, generally made of plastic

3.5

short-circuit deactivation device

mechanical system used to open the short-circuit

3.6

short-circuited initiator

inert initiator with two pins internally short-circuited and with a shunt, used for testing

3.7

squib holder

part of the pyrotechnic device, holding the initiator and the retainer

4 Functional characteristics of mated connectors

4.1 General

Mated connectors shall conform to the requirements of 4.2 to 4.16.

Unless other specifications are given, the temperature classes to be taken into account for these tests (see ISO 8092-2) are class 2.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

The test and corresponding requirements shall conform to ISO 8092-2.

<https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

4.3 Mating and unmating

The test shall be carried out in accordance with ISO 8092-2, by measuring the force applied on the connector.

The connector shall not be locked during the mating and unmating process unless otherwise specified.

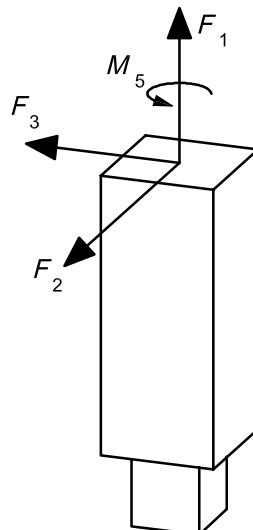
The mating/unmating sequence shall conform to that illustrated in Figure 11.

The maximum connecting and disconnecting force measured on the connector shall be less than 40 N.

NOTE The movements of the mating sequence (see Figure 11) can be carried out simultaneously with the same force.

4.4 Resistance to tensile and compressive force between the connector and squib holder equipped with initiator and retainer

4.4.1 Test


4.4.1.1 General

The connector shall be locked for testing.

This test is a destructive test carried out on an assembly comprising squib holder, initiator with pins and retainer.

4.4.1.2 Straight connectors

The test is carried out on a new sample, applying the forces in the directions shown in Figure 1 on the straight connector without its cable.

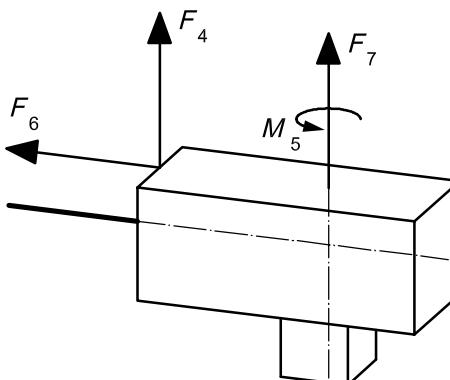
Key

F_1 tensile force

F_2, F_3 tensile and compressive forces

M_5 torque

iTeh STANDARD PREVIEW
(standards.iteh.ai)


Figure 1 — Direction of forces applied on straight connectors

<https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

4.4.1.3 Right angle connectors

The test is carried out on a new sample, applying the forces F_4 and F_6 on the connector body where the cable exits the connector, in the directions shown in Figure 2.

Apply the force F_7 in the central axis of the connector as shown in Figure 2.

Key

F_4, F_6 tensile and compressive forces

F_7 tensile force

M_5 torque

Figure 2 — Direction of forces applied on right angle connectors

4.4.2 Requirements

4.4.2.1 Straight connectors

Mated straight connectors shall be able to withstand minimum forces and torque indicated in Table 1.

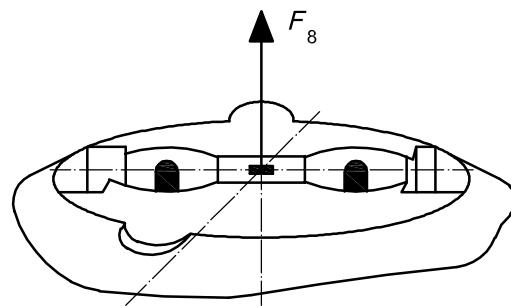
Table 1 — Minimum tensile and compressive force values for straight connectors

Forces/torque applied to straight connectors	Minimum values of tensile/compressive forces or torque for straight connectors
F_1	120 N ^a
F_2	80 N
F_3	80 N
M_5	1,5 Nm

^a For the test carried out with force F_1 , after 10 cycles, the value of the minimum force is 100 N.

4.4.2.2 Right angle connectors

Mated right angle connectors shall be able to withstand minimum forces and torque indicated in Table 2.


Table 2 — Minimum values of tensile/compressive forces or torque for right angle connectors

Forces/torque applied to right angle connectors	Minimum values of tensile/compressive forces or torque for right angle connectors
F_4	70 N
F_6	80 N
F_7	100 N
M_5	1,5 Nm

4.5 Mechanical strength of the retainer in the squib holder

4.5.1 Test

The test is carried out on a new sample, by applying the forces in the directions shown in Figure 3 on the retainer installed in the squib holder.

Key

F_8 force applied to retainer installed in squib holder

Figure 3 — Direction of forces applied to the retainer installed in the squib holder

4.5.2 Requirements

The retainer installed in the squib holder without mated connector shall withstand minimum force F_8 indicated in Table 3.

Table 3 — Minimum force applied to the retainer installed in the squib holder

Force applied to the retainer installed in the squib holder	Minimum value of force applied to the retainer installed in the squib holder
F_8	10 N

4.6 Combination of temperature/humidity/vibration

ISO 19072-2:2007
<https://standards.iteh.ai/catalog/standards/sist/d409ecbc-8bba-47be-b59b-8632e8f7d036/iso-19072-2-2007>

4.6.1 Test

Samples from a series application are assembled with a cable, mated and preconditioned for 48 h in a ventilated heat chamber at $(65 \pm 2)^\circ\text{C}$.

The mated connectors are then secured to a vibrating table with the pins connected in series on the short-circuited initiator side and connected to a direct current source delivering an intensity of 50 mA, so that the variation in contact resistance can be determined throughout the test. Apply the frequency variations indicated in Table 4 to the connection by logarithmic modulation of 1 octave/min for 48 h per axis (i.e. 144 h in total) using the test setup described in Figures 4 and 5.

Table 4 — Test parameters for combined temperature/humidity/vibration test

Frequency, f Hz	Displacement/ acceleration
$5 \leq f \leq 25$	$\pm 1,2 \text{ mm}$
$25 < f \leq 200$	$3 g^a$
$200 < f \leq 2\,000$	$1 g$

^a The conventional value for acceleration due to gravity is $9\,806\,65 \text{ m/s}^2$.