INTERNATIONAL STANDARD

Animal and vegetable fats and oils Determination of conventional mass per volume (litre weight in air)

Corps gras d'origines animale et végétale - Détermination de la masse volumique conventionnelle (poids du litre dans l'air)

iTeh STANDARD PREVIEW (standards.iteh.ai)

Reference number SO 6883:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6883:2007
https://standards.iteh.ai/catalog/standards/sist/ab9dba27-9523-4eae-868f-
50e0e21179a9/iso-6883-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
Contents Page
Foreword iv
1 Scope 1
2 Normative references 1
3 Term and definition. 1
4 Principle 1
5 Apparatus 1
6 Sampling 2
$7 \quad$ Preparation of test sample 3
8 Procedure 3
8.1 Calibration of pyknometer 3
8.2 Determination 3
9 Expression of results 4
9.1 Calculation of the volume of the pyknometer. 4
9.2 Calculation of the conventional mass pervolume......................... 6
10 Precision 7
10.1 Interlaboratory tests 7
10.2 Repeatability 7
10.3 Reproducibility 7
11 Test report https.//standards.iteh.. 7
Annex A (informative) Results of interlaboratory tests 8
Bibliography 9

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6883 was prepared by Technical Committee ISO/TC 34, Food products, Subcommittee SC 11, Animal and vegetable fats and oils.

This fourth edition cancels and replaces the third edition (ISO 6883:2000), which has been been technically revised. (standards.iteh.ai)

Animal and vegetable fats and oils - Determination of conventional mass per volume (litre weight in air)

1 Scope

This International Standard specifies a method for the determination of the conventional mass per volume ("litre weight in air") of animal and vegetable fats and oils (hereinafter referred to as fats) in order to convert volume to mass or mass to volume.

The procedure is applicable only to fats in a liquid state.
The temperature of determination applied for any fat should be such that the fat does not deposit crystals at that temperature.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)applies. l° ds.iteh.ai)

ISO 661, Animal and vegetable fats and oils - Preparation of test sample
ISO 3507, Laboratory hltas///sswandards.ite -Pyknometers
ISO 3507, Laboratory glassware - Pyknometers ${ }_{\text {andiso-6883-2007 }}$

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
 conventional mass per volume
 litre weight in air
 quotient of the mass in air of fat to its volume at a given temperature

NOTE It is expressed in kilograms per litre (numerically equal to grams per millilitre).

4 Principle

The mass of a volume of liquid fat in a calibrated pyknometer is measured at a specified temperature.

5 Apparatus

Usual laboratory apparatus and, in particular, the following.
5.1 Water bath, capable of being maintained to within $0,1^{\circ} \mathrm{C}$ of the temperatures chosen for the calibration and determination.

It should be fitted with a calibrated thermometer, graduated in divisions of $0,1^{\circ} \mathrm{C}$ covering the relevant temperature range.
5.2 Pyknometer (Jaulmes), of capacity 50 ml , with side-arm.

It should be fitted by means of conical joints with a calibrated thermometer graduated in divisions of $0,1^{\circ} \mathrm{C}$ and with a cap perforated at the top for the side-arm (see Figure 1).

The pyknometer should preferably be made of borosilicate glass, but if this is not available then one made of soda glass may be used.

NOTE The cap is only essential if the determination is carried out at a temperature below ambient.
Alternatively, the Type 3 (Gay-Lussac) pyknometer (see Figure 2) specified in ISO 3507 may be used; however, the use of a pyknometer with thermometer is preferred.

Figure 1 - Jaulmes pyknometer
Figure 2 - Gay-Lussac pyknometer

6 Sampling

A representative sample should have been sent to the laboratory. It should not have been damaged or changed during transport or storage.

Sampling is not part of the method specified in this International Standard. A recommended sampling method is given in ISO 5555.

7 Preparation of test sample

Prepare the test sample in accordance with ISO 661, but do not filter or dry it.
Take care not to include air bubbles in the fat.

8 Procedure

8.1 Calibration of pyknometer

8.1.1 Calibrate the pyknometer (5.2) at least once a year, and at least in duplicate, by the procedure described in 8.1.2. Calibrate a pyknometer made of soda glass at least once every 3 months, at least in duplicate.

NOTE The calibration procedure described is used to determine the volume of the pyknometer when filled with water at the temperature θ_{c}.
8.1.2 Calibrate the pyknometer at the following temperatures:
a) at $40^{\circ} \mathrm{C}$ if the mean coefficient of cubic expansion (γ) of the pyknometer glass is known;
b) at $20^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ if γ is not known.
8.1.3 Clean and thoroughly dry the pyknometer. Weigh, to the nearest $0,1 \mathrm{mg}$, the empty pyknometer with the thermometer and cap or with the stopper $\left(m_{1}\right)$.
(standairdsoitelh.ai)
Bring recently distilled water or water of equivalent purity, free from air, to a temperature approximately $5^{\circ} \mathrm{C}$ below the temperature of the water bath. Remove the thermometer and cap (or the stopper) and fill the pyknometer with the prepared water. Replace the thermometer or stopper Take care not to include air bubbles during these operations. Place the filled pyknometer in the water bath, so that it immersed up to the middle of its conical socket, until the contents have reached a stable temperature (which takes about 1 h). Allow the water to overflow from the side arm or stopper outlet. Record the temperature, θ_{c}, of the pyknometer contents to the nearest $0,1^{\circ} \mathrm{C}$. Carefully remove any water that has overflowed from the top and side of the side-arm or stopper. Place the cap on the side-arm. Remove the pyknometer from the water bath, wiping it thoroughly with fluff-free material until dry. Allow its temperature to reach ambient.

Weigh the full pyknometer with the thermometer and cap, or with the stopper, to the nearest $0,1 \mathrm{mg}\left(m_{2}\right)$.
If the value of γ for the pyknometer glass is not known, adjust the water bath to the desired second calibration temperature and repeat the calibration procedure.

8.2 Determination

8.2.1 General

For a temperature of determination below ambient temperature, use a Jaulmes pyknometer.
Clean and thoroughly dry the pyknometer. Weigh, to the nearest $0,1 \mathrm{mg}$, the empty pyknometer with the thermometer and cap or with the stopper.

Adjust the water bath (5.1) to a temperature that does not vary by more than $1^{\circ} \mathrm{C}$ from the temperature required for the determination, i.e. the temperature at the time of measurement of the fat in the bulk tank.

Bring the prepared test sample (Clause 7) to a temperature of $3^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ below the temperature of the water bath. Mix carefully.

8.2.2 Fats which are solid at ambient temperatures

Heat the test sample (Clause 7) to approximately $5{ }^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ above its melting point. Stir until all the crystals are seen to be dissolved completely. Follow the procedure given in 8.2.1, allowing the full pyknometer to cool before weighing it.

8.2.3 Using the Jaulmes pyknometer

Weigh, to the nearest $0,1 \mathrm{mg}$, the empty pyknometer with the thermometer and cap.
Remove the cap from the side-arm and replace it by a short piece of flexible plastic tubing (3 cm to 5 cm) to form a watertight joint. Fill the pyknometer with the test sample and replace the thermometer, taking care not to include air bubbles.

NOTE Some of the sample rises into the plastic tube and is then able to expand or contract, as appropriate.
Immerse the filled pyknometer, up to the middle of its conical socket, for 2 h in the water bath (5.1) maintained at the temperature chosen for the determination, to allow the contents to reach this temperature. Remove the filled plastic tube with thumb and forefinger and wipe dry the surplus sample from the outlet. Replace the cap. Record the temperature, θ_{d}, of the pyknometer to the nearest $0,1^{\circ} \mathrm{C}$.

Remove the pyknometer from the water bath, wiping it carefully with fluff-free material until dry. Allow its temperature to reach ambient, then weigh, to the nearest $0,1 \mathrm{mg}$, the full pyknometer with the thermometer and cap $\left(m_{3}\right)$.

8.2.4 Using the Gay-Lussac pyknometer ANDARD PREVIEW
 Weigh, to the nearest $0,1 \mathrm{mg}$, the empty pyknometer with the stopper.

Fill the pyknometer with the test sample (Clause 7) and replace the stopper, taking care not to include air bubbles. Immerse the filled pyknometer, up to the middle of its conical socket, for 2 h in the water bath (5.1) maintained at the temperature chosen for the determination to allow, the contents to reach this temperature.

Allow the sample to overflow and wipe the surplus from the outlet. Record the temperature, θ_{d}, of the water bath to the nearest $0,1^{\circ} \mathrm{C}$. Wipe dry the surplus from the outlet.

Remove the pyknometer from the water bath, wiping it carefully with fluff-free material until dry. Allow its temperature to reach ambient, then weigh, to the nearest $0,1 \mathrm{mg}$, the full pyknometer with stopper $\left(m_{3}\right)$.

9 Expression of results

9.1 Calculation of the volume of the pyknometer

Calculate the volume of the pyknometer at the calibration temperature θ_{C} by Equation (1):

$$
\begin{equation*}
V_{\mathrm{c}}=\frac{m_{2}-m_{1}}{\rho_{\mathrm{w}}} \tag{1}
\end{equation*}
$$

where
$V_{\mathrm{C}} \quad$ is the volume, in millilitres, of the pyknometer at calibration temperature θ_{C};
m_{2} is the mass, in grams, of the pyknometer filled with water, including thermometer and cap or stopper;
m_{1} is the mass, in grams, of the empty pyknometer with thermometer and cap or with stopper;
$\rho_{\mathrm{w}} \quad$ is the conventional mass per volume of water at calibration temperature θ_{C}, in grams per millilitre (deduce ρ_{w} from Table 1, if necessary by interpolation).

Table 1 - Conventional mass per volume ("litre weight in air") of water at temperatures from $15{ }^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

Temperature θ ${ }^{\circ} \mathrm{C}$	"Litre weight in air" ρ_{w} g / ml	Temperature θ ${ }^{\circ} \mathrm{C}$	"Litre weight in air" ρ_{w} g / ml	Temperature θ ${ }^{\circ} \mathrm{C}$	"Litre weight in air" ρ_{w} g / ml
15	0,998 05	35	0,992 98	55	0,984 65
16	0,997 89	36	0,992 64	56	0,984 16
17	0,997 72	37	0,992 28	57	0,983 67
18	0,997 54	38	0,991 92	58	0,983 17
19	0,997 35	39	0,991 55	59	0,982 67
20	0,997 15	40	0,991 17	60	0,982 17
21	0,996 94	41	0,990 79	61	0,981 65
22	0,996 72	42	0,990 39	62	0,981 13
23	0,996 49	43	0,989 99	63	0,980 60
24	0,996 24	44	0,989 58	64	0,980 06
25	0,995,99 ar	- 45	0,98917	TV 65	0,979 52
26	0,995 73	46	0,988 74		
27	0,995 46	tan47ard	S.it 0,98832)		
28	0,995 18	48	0,987 88		
29		$\begin{array}{\|c\|} 49 \\ \text { 2ai/catalog/standa } \\ 50 \mathrm{e} 0 \mathrm{e} 21179 \mathrm{a} 9 / \mathrm{i} \end{array}$	$\begin{aligned} & \text { di:2007 } 0,987 \text { 444 } \mathrm{ds} \text { (sistabedba2/-9523-4 } \\ & \text { o-6883-2007 } \end{aligned}$	ae-868f-	
30	0,994 60	50	0,986 99		
31	0,994 29	51	0,986 54		
32	0,993 98	52	0,986 07		
33	0,993 65	53	0,985 61		
34	0,993 32	54	0,985 13		

If the mean coefficient of cubic expansion (γ) of the pyknometer glass is not known, calculate γ from the calibration results at $20^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ by Equation (2):

$$
\begin{equation*}
\gamma=\frac{V_{\mathrm{c} 2}-V_{\mathrm{c} 1}}{V_{\mathrm{c} 1}\left(\theta_{2}-\theta_{1}\right)} \tag{2}
\end{equation*}
$$

where
$\gamma \quad$ is the mean coefficient of cubic expansion of the pyknometer glass, per degree Celsius;
$V_{\mathrm{c} 2}$ is the volume, in millilitres, of the pyknometer at calibration temperature θ_{2};
$V_{\mathrm{c} 1}$ is the volume, in millilitres of the pyknometer at calibration temperature θ_{1};
θ_{1} is the temperature, in degrees Celsius, close to $60^{\circ} \mathrm{C}$, at which the pyknometer was calibrated;
θ_{2} is the temperature, in degrees Celsius, close to $20^{\circ} \mathrm{C}$, at which the pyknometer was calibrated.

