INTERNATIONAL STANDARD

ISO/IEC 16022

Second edition
2006-09-15

Information technology — Automatic identification and data capture techniques — Data Matrix bar code symbology specification

Technologies de l'information — Techniques d'identification automatique et de capture des données — Spécification de symbologie de code à barres Data Matrix

Reference number
ISO/IEC 16022:2006(E)

© ISO/IEC 2006
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>viii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms, definitions, symbols and abbreviated terms, and mathematical/logical notations</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Symbols and abbreviations</td>
<td>2</td>
</tr>
<tr>
<td>3.3 Mathematical/logical notations</td>
<td>3</td>
</tr>
<tr>
<td>4 Symbol description</td>
<td>3</td>
</tr>
<tr>
<td>4.1 Basic characteristics</td>
<td>3</td>
</tr>
<tr>
<td>4.2 Summary of additional features</td>
<td>4</td>
</tr>
<tr>
<td>4.3 Symbol structure</td>
<td>4</td>
</tr>
<tr>
<td>4.3.1 Finder pattern</td>
<td>5</td>
</tr>
<tr>
<td>4.3.2 Symbol sizes and capacities</td>
<td>5</td>
</tr>
<tr>
<td>5 ECC 200 requirements</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Encode procedure overview</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Data encodation</td>
<td>6</td>
</tr>
<tr>
<td>5.2.1 Overview</td>
<td>6</td>
</tr>
<tr>
<td>5.2.2 Default character interpretation</td>
<td>6</td>
</tr>
<tr>
<td>5.2.3 ASCII encodation</td>
<td>7</td>
</tr>
<tr>
<td>5.2.4 Symbology control characters</td>
<td>7</td>
</tr>
<tr>
<td>5.2.5 C40 encodation</td>
<td>9</td>
</tr>
<tr>
<td>5.2.6 Text encodation</td>
<td>11</td>
</tr>
<tr>
<td>5.2.7 ANSI X12 encodation</td>
<td>11</td>
</tr>
<tr>
<td>5.2.8 EDIFACT encodation</td>
<td>12</td>
</tr>
<tr>
<td>5.2.9 Base 256 encodation</td>
<td>12</td>
</tr>
<tr>
<td>5.3 User considerations</td>
<td>13</td>
</tr>
<tr>
<td>5.3.1 User selection of Extended Channel Interpretation</td>
<td>13</td>
</tr>
<tr>
<td>5.3.2 User selection of symbol size and shape</td>
<td>13</td>
</tr>
<tr>
<td>5.4 Extended Channel Interpretation</td>
<td>13</td>
</tr>
<tr>
<td>5.4.1 Encoding ECIs</td>
<td>14</td>
</tr>
<tr>
<td>5.4.2 ECIs and Structured Append</td>
<td>15</td>
</tr>
<tr>
<td>5.4.3 Post-decode protocol</td>
<td>15</td>
</tr>
<tr>
<td>5.5 ECC 200 symbol attributes</td>
<td>15</td>
</tr>
<tr>
<td>5.5.1 Symbol sizes and capacity</td>
<td>15</td>
</tr>
<tr>
<td>5.5.2 Insertion of Alignment Patterns into larger symbols</td>
<td>17</td>
</tr>
<tr>
<td>5.6 Structured Append</td>
<td>17</td>
</tr>
<tr>
<td>5.6.1 Basic principles</td>
<td>17</td>
</tr>
<tr>
<td>5.6.2 Symbol sequence indicator</td>
<td>17</td>
</tr>
<tr>
<td>5.6.3 File identification</td>
<td>18</td>
</tr>
<tr>
<td>5.6.4 FNC1 and Structured Append</td>
<td>18</td>
</tr>
<tr>
<td>5.6.5 Buffered and unbuffered operation</td>
<td>18</td>
</tr>
<tr>
<td>5.7 Error detection and correction</td>
<td>18</td>
</tr>
<tr>
<td>5.7.1 Reed-Solomon error correction</td>
<td>18</td>
</tr>
<tr>
<td>5.7.2 Generating the error correction codewords</td>
<td>18</td>
</tr>
<tr>
<td>5.7.3 Error correction capacity</td>
<td>19</td>
</tr>
<tr>
<td>5.8 Symbol construction</td>
<td>20</td>
</tr>
<tr>
<td>5.8.1 Symbol character placement</td>
<td>20</td>
</tr>
<tr>
<td>5.8.2 Alignment Pattern module placement</td>
<td>20</td>
</tr>
</tbody>
</table>
Annex M (normative) Data Matrix print quality – symbology-specific aspects .. 105
M.1 Data Matrix Fixed Pattern Damage .. 105
M.1.1 Features to be assessed .. 105
M.1.2 Grading of the outside L of the fixed pattern .. 105
M.1.3 Grading of the clock track and adjacent solid area segments ... 107
M.1.4 Calculation and grading of average grade ... 111
M.2 Scan grade ... 112
Annex N (normative) Symbology identifier ... 113
Annex O (informative) ECC 200 encode example ... 114
Annex P (informative) Encoding data using the minimum symbol data characters for ECC 200 116
Annex Q (informative) ECC 000 - 140 encode example using ECC 050 .. 120
Q.1 Encode example ... 120
Q.2 CRC calculation for example .. 125
Annex R (informative) Useful process control techniques .. 128
R.1 Symbol contrast ... 128
R.2 Special reference symbol .. 128
R.3 Assessing Axial Nonuniformity ... 129
R.4 Visual inspection for symbol distortion and defects .. 129
Annex S (informative) Autodiscrimination capability .. 130
Annex T (informative) System considerations ... 131
Bibliography ... 132
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 16022 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 31, Automatic identification and data capture techniques.

This second edition cancels and replaces the first edition (ISO/IEC 16022:2000), which has been technically revised. It also incorporates the Technical Corrigendum ISO/IEC 16022:2000/Cor.1:2004.
Introduction

Data Matrix is a two-dimensional matrix symbology which is made up of nominally square modules arranged within a perimeter finder pattern. Though primarily shown and described in this International Standard as a dark symbol on light background, Data Matrix symbols can also be printed to appear as light on dark.

Manufacturers of bar code equipment and users of the technology require publicly available standard symbology specifications to which they can refer when developing equipment and application standards. The publication of standardised symbology specifications is designed to achieve this.
Information technology — Automatic identification and data capture techniques — Data Matrix bar code symbology specification

1 Scope

This International Standard defines the requirements for the symbology known as Data Matrix. It specifies the Data Matrix symbology characteristics, data character encodation, symbol formats, dimensions and print quality requirements, error correction rules, decoding algorithm, and user-selectable application parameters.

It applies to all Data Matrix symbols produced by any printing or marking technology.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 15424, Information technology — Automatic identification and data capture techniques — Data Carrier Identifiers (including Symbology Identifiers)

ISO/IEC 19762-1, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 1: General terms relating to AIDC

ISO/IEC 19762-2, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 2: Optically readable media (ORM)

ISO/IEC 15415, Information technology — Automatic identification and data capture techniques — Bar code print quality test specification — Two-dimensional symbols

ISO/IEC 15416, Information technology — Automatic identification and data capture techniques — Bar code print quality test specification — Linear symbols

ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1

3 Terms, definitions, symbols and mathematical/logical notations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 19762-1, ISO/IEC 19762-2 and the following apply.

3.1.1 codeword
symbol character value, an intermediate level of coding between source data and the graphical encodation in the symbol

3.1.2 module
single cell in a matrix symbology used to encode one bit of data, nominally a square shape in Data Matrix

3.1.3 convolutional coding
error checking and correcting (ECC) algorithm that processes a set of input bits into a set of output bits that can recover from damage by breaking the input bits into blocks, then convolving each input block with the contents of a multi-stage shift register to produce protected output blocks

NOTE These encoders can be constructed in hardware using input and output switches, shift registers, and exclusive-or (XOR) gates.

3.1.4 pattern randomising
procedure to convert an original bit pattern to another bit pattern, intended to reduce the probability of repeating patterns occurring in the symbol, by inverting selected bits

3.2 Symbols

For the purposes of this document, the following mathematical symbols apply unless defined locally.

\[d \] number of error correction codewords

\[e \] number of erasures

\[k \] (for ECC 000 - 140) the number of bits in a complete segment input to the state machine to generate the convolutional code (for ECC 200) total number of error correction codewords

\[m \] the memory order of the convolutional code

\[n \] (for ECC 000 - 140) the number of bits in a complete segment generated by the state machine producing the convolutional code (for ECC 200) total number of data codewords

\[N \] the numerical base in an encodation scheme

\[p \] number of codewords reserved for error detection

\[S \] symbol character

\[t \] number of errors

\[u \] the input bit segment to the state machine, taken \(k \) bits at a time

\[v \] the output bit segment from the state machine, generated \(n \) bits at a time
3.3 Mathematical/logical notations

For the purposes of this document, the following notations and mathematical operations apply.

- div integer division operator
- mod integer remainder after division
- XOR exclusive-or logic function whose output is one only when its two inputs are not equivalent.
- LSB least significant bit
- MSB most significant bit

4 Symbol description

4.1 Basic characteristics

Data Matrix is a two-dimensional matrix symbology.

There are two types:

- ECC 200 which uses Reed-Solomon error correction. ECC 200 is recommended for new applications.
- ECC 000 - 140 with several available levels of convolutional error correction, referred to as ECC 000, ECC 050, ECC 080, ECC 100 and ECC 140 respectively. ECC 000 - 140 should only be used in closed applications where a single party controls both the production and reading of the symbols and is responsible for overall system performance.

The characteristics of Data Matrix are:

a) Encodable character set:

1) values 0 – 127 in accordance with the US national version of ISO/IEC 646

NOTE 1 This version consists of the G0 set of ISO/IEC 646 and the C0 set of ISO/IEC 6429 with values 28 – 31 modified to FS, GS, RS and US respectively.

2) values 128 - 255 in accordance with ISO 8859-1. These are referred to as extended ASCII.

b) Representation of data: A dark module is a binary one and a light module is a zero.

NOTE 2 This International Standard specifies Data Matrix symbols in terms of dark modules marked on a light background. However, subclause 4.2 provides that symbols may also be produced with light and dark modules reversed in colour (see 4.2), and in such symbols references in this International Standard to dark modules should be taken as references to light modules, and vice versa.

c) Symbol size in modules (not including quiet zone):

- ECC 200 10 x 10 to 144 x 144 even values only
- ECC 000 – 140 9 x 9 to 49 x 49, odd values only
d) Data characters per symbol (for maximum symbol size in ECC200):

1) Alphanumeric data: up to 2 335 characters
2) 8-bit byte data: 1 555 characters
3) Numeric data: 3 116 digits.

e) Selectable error correction:

- ECC 200: Reed-Solomon error correction.
- ECC 000 - 140: Four levels of convolutional error correction, plus the option to apply only error detection.

f) Code type: Matrix

g) Orientation independence: Yes

4.2 Summary of additional features

The following summarises additional features which are inherent or optional in Data Matrix:

a) Reflectance reversal: (Inherent): Symbols are intended to be read when marked so that the image is either dark on light or light on dark (see Figure 1). The specifications in this International Standard are based on dark images on a light background, therefore references to dark or light modules should be taken as references to light or dark modules respectively in the case of symbols produced with reflectance reversal.

b) Extended Channel Interpretations: (ECC 200 only, optional): This mechanism enables characters from other character sets (e.g. Arabic, Cyrillic, Greek, Hebrew) and other data interpretations or industry-specific requirements to be represented.

c) Rectangular symbols: (ECC 200 only, optional): Six symbol formats are specified in a rectangular form.

d) Structured append: (ECC 200 only, optional): This allows files of data to be represented in up to 16 Data Matrix symbols. The original data can be correctly reconstructed regardless of the order in which the symbols are scanned.

4.3 Symbol structure

Each Data Matrix symbol consists of data regions which contain nominally square modules set out in a regular array. In larger ECC 200 symbols, data regions are separated by alignment patterns. The data region, or set of data regions and alignment patterns, is surrounded by a finder pattern, and this shall in turn be surrounded on all four sides by a quiet zone border. Figure 1 illustrates an ECC 140 and two representations of an ECC 200 symbol.
4.3.1 Finder pattern

The finder pattern is a perimeter to the data region and is one module wide. Two adjacent sides, the left and lower sides, forming the L boundary, are solid dark lines; these are used primarily to determine physical size, orientation and symbol distortion. The two opposite sides are made up of alternating dark and light modules. These are used primarily to define the cell structure of the symbol, but also can assist in determining physical size and distortion. The extent of the quiet zone is indicated by the corner marks in Figure 1.

4.3.2 Symbol sizes and capacities

ECC 200 symbols have an even number of rows and an even number of columns. Some symbols are square with sizes from 10 x 10 to 144 x 144 not including quiet zones. Some symbols are rectangular with sizes from 8 x 18 to 16 x 48 not including quiet zones. All ECC 200 symbols can be recognised by the upper right corner module being light. The complete attributes of ECC 200 symbols are given in Table 7 in Section 5.5.

ECC 000 - 140 symbols have an odd number of rows and an odd number of columns. Symbols are square with sizes from 9 x 9 to 49 x 49 (modules) not including quiet zones. These symbols can be recognised by the upper right corner module being dark. The complete attributes of ECC 000 - 140 symbols are given in Annex G.

5 ECC 200 requirements

5.1 Encode procedure overview

This section provides an overview of the encoding procedure. Following sections will provide more details. An encoding example for ECC 200 is given in Annex O. The following steps convert user data to an ECC 200 symbol:

Step 1: Data encodation

Analyse the data stream to identify the variety of different characters to be encoded. ECC 200 includes various encodation schemes which allow a defined set of characters to be converted into codewords more efficiently than the default scheme. Insert additional codewords to switch between the encodation schemes and to perform other functions. Add pad characters as needed to fill the required number of codewords. If the user does not specify the matrix size, then choose the smallest size that accommodates the data. A complete list of matrix sizes is shown in Section 5.5, Table 7.