INTERNATIONAL STANDARD

ISO 417

Second edition 1993-04-15

Photography — Determination of residual thiosulfate and other related chemicals in processed photographic materials — Methods using iodine-amylose, methylene iTeh S blue and silver sulfide W

(standards.iteh.ai)

Photographie ____Détermination du thiosulfate résiduel et d'autres produits chimiques dans les produits photographiques traités — Méthodes à l'iode-amylose, au bleu de méthylène et au sulfure d'argent

Reference number ISO 417:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 417 was prepared by Technical Committee ISO/TC 42, Photography.

This second edition cancels and replaces the first edition (ISO 417:1977), which has been technically revised 4td now contains an update anylose 2fd9-4822-9615method which can generally be used with film and paper and which should be used with film and paper containing incorporated developing agents.

Annexes A, B, C, D, E and F of this International Standard are for information only.

ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

This International Standard is one of a series of specifications on photographic processing. This International Standard may occasionally be used by individuals without a working knowledge of analytical chemistry. Hazard warnings have therefore been given using a system of symbols with letter codes designating the nature of the hazard. More detailed information regarding hazards, handling and use of these chemicals may also be available from the manufacturer.

Determination of residual thiosulfate and its decomposition products is of use in appraising the adequacy of washing and therefore the permanence of the silver image on photographic film, plates and paper. Inadequate washing can cause a loss in image density and the formation of stain in low-density areas. These deleterious effects are accelerated by improper

iTeh S storage conditions. PRE

Determination of residual thiosulfate and related compounds, by itself, is not sufficient to insure the permanence of photographic records. Longterm or archival storage requires the proper attention to enclosure materials, storage environment, and the like. These considerations are https://standards.iten arctified in ISO 3897, ISO 5466, ISO 6051 and ISO 10602.

e9bace36405a/iso-417-1993

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 417:1993 https://standards.iteh.ai/catalog/standards/sist/2e96918c-2fd9-4822-9615e9bace36405a/iso-417-1993

INTERNATIONAL STANDARD

Photography — Determination of residual thiosulfate and other related chemicals in processed photographic materials — Methods using iodine-amylose, methylene blue and silver sulfide

1 Scope

1.1 This International Standard specifies test methods for the determination of residual thiosulfate and related compounds in processed photographic materials. 11eh SIANDA

1.6 The silver sulfide densitometric method measures thiosulfates, polythionates and all other residual chemicals in a processed product that react with silver ion to form a silver "stain" under the conditions of the test.

NOTE 2 This method requires a photometer or

spectrophotometer capable of operating in the reflectance

1.2 It applies to silver halide/gelatin products that have been processed with a final thiosulfate fixing 1.7 A tabulated summary of methods, scope, etc. is bath and a water wash. Stabilized black-and-white 7: products are not included a The procedures given in and sist 2009 18c-21d9-4822-9615-

(mode.ai)

this International Standard measure 9haresidual/iso-417-1993 thiosulfate, and the silver densitometric method measures residual related polythionate materials as well. Measurements carried out by the procedures given in this International Standard may, within the limitations stated in annexes A and B, correlate with the image stabilities of processed photographs.

1.3 Film or plates with photographic-sensitive layers on both sides, or with a photographic sensitive layer on one side and a gelatin backing layer on the reverse side, may contain approximately twice as much thiosulfate after processing as samples having a coating on one side only. This situation will be true for materials for which residual thiosulfate is determined by the iodine-amylose or methylene blue procedures.

For the method of reporting such results, see NOTE 1 figure 1, example 3.

1.4 The iodine-amylose method can be used with fibre-based paper, film and plates. It is the method to be used with film and paper containing incorporated developing agents.

1.5 The methylene blue method can be used with fibre-based paper, film and plates, but not with film and paper containing incorporated developing agents.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 5-3:1984, Photography — Density measurements - Part 3: Spectral conditions.

ISO 385-1:1984, Laboratory glassware — Burettes — Part 1: General requirements.

ISO 648:1977, Laboratory glassware — One-mark pipettes.

ISO 835-1:1981, Laboratory glassware - Graduated pipettes — Part 1: General requirements.

ISO 835-2:1981, Laboratory glassware - Graduated pipettes - Part 2: Pipettes for which no waiting time is specified.

ISO 417:1993(E)

ISO 835-3:1981, Laboratory glassware — Graduated pipettes — Part 3: Pipettes for which a waiting time of 15 s is specified.

ISO 835-4:1981, Laboratory glassware - Graduated pipettes - Part 4: Blow-out pipettes.

ISO 1042:1983, Laboratory glassware - One-mark volumetric flasks.

ISO 4788:1980, Laboratory glassware - Graduated measuring cylinders.

General requirements 3

3.1 Safety and hazard concerns

3.1.1 Handling

Reagents shall be handled in conformity with health and safety precautions as shown on containers or as given in other sources of such information. Proper labelling of prepared reagents includes chemical name, date of preparation, expiration date, restandardization date, name of preparer, and adequate health and safety precautions. The discharge of reagents shall conform to applicable environmental regulations. (standards.iteh.ai)

3.1.2 Hazard warnings

Some of the chemicals specified an inartheeltestatprostandards/sist/2e96918c-2lowed2-obtain medical attention imcedures are caustic, toxic or otherwise hazardous36405a/iso-417-1993 Safe laboratory practice for the handling of chemicals

requires the use of safety glasses or goggles, rubber gloves and other protective apparel such as face masks or aprons where appropriate. Specific danger notices are given in the text and footnotes for particularly dangerous materials, but normal precautions are required during the performance of any chemical procedure at all times.

The first time that a hazardous material is noted in the test procedure section, the hazard will be indicated by the word "DANGER" followed by a symbol consisting of angle brackets "< >" containing a letter which designates the specific hazard. A double bracket "<< >>" will be used for particularly perilous situations.

In subsequent statements involving handling of these hazardous materials, only the hazard symbol consisting of the brackets and letter(s) will be displayed. Furthermore, for a given material, the hazard symbols will be used only once in a single paragraph.

Detailed warnings for handling chemicals and their diluted solutions are beyond the scope of this International Standard.

Employers shall provide training and health and safety information in conformance with legal requirements.

The hazard symbol system used in this International Standard is intended to provide information to the users and is not meant for compliance with legal requirements for labelling as these vary from country to country.

It is strongly recommended that anyone using these chemicals obtain from the manufacturer pertinent information about the hazards, handling, use and disposal of these chemicals.

3.1.3 Hazard information code system

< B > Harmful if inhaled. Avoid breathing dust, vapour, mist or gas. Use only with adequate ventilation.

Harmful if contact occurs. Avoid con-< C > tact with eves, skin or clothing. Wash thoroughly after handling.

> Harmful if swallowed. Wash thoroughly after handling. If swallowed, obtain medical attention immediately.

ISO 417:1993<<S>> May be fatal if swallowed. If swalmediately.

> < F > Will burn. Keep away from heat, sparks and open flame. Use with adequate ventilation.¹⁾

> Oxidizer. Contact with other material < 0 > may cause fire. Do not store near combustible materials.

3.2 Reagents

< S >

Reagents used in the test procedures shall be certified reagent-grade chemicals and shall meet appropriate standards or be chemicals of a purity acceptable for the analysis.

NOTE 3 Further details are given in ISO 6353-1, ISO 6353-2 and ISO 6353-3.

Whenever water is specified without other qualifiers in the test procedures, only distilled water or water of at least equal purity shall be used.

1) The flammable warning symbol, $\langle F \rangle$, will not be used for quantities of common solvents under 1 litre.

3.3 Glassware

All glassware subject to heating shall be of heat-resistant borosilicate glass.²⁾

Pipettes and other volumetric glassware shall meet the volume requirements of Class A or Class B glassware as specified in ISO 385-1, ISO 648, ISO 835-1, ISO 835-2, ISO 835-3, ISO 835-4, ISO 1042 and ISO 4788.

4 lodine-amylose method

4.1 Use

The iodine-amylose method is applicable to the determination of residual thiosulfate ions in resin-coated (RC) photographic film and paper containing incorporated developing agents. The method is also applicable to measuring residual thiosulfate ion in fibre-based paper, film and plates. This method measures only thiosulfate ions and gives results comparable to those obtained by the methylene blue method.

NOTE 4 The method gives results that correlate well with accelerated keeping tests of several processed microfilms and is applicable to colour as well as black-and-white products.

4.4 Reagents

4.4.1 Potassium iodate, $c(KIO_3) = 0,000\ 017\ mol/l (0,003\ 57\ g/l)$

Prepare a 0,016 7 mol/l solution of potassium iodate by weighing 0,357 g of potassium iodate (DANGER: < 0 >), placing it in a 100 ml one-mark volumetric flask, making up to the mark with water and mixing well. Pipette 1,0 ml of the 0,016 7 mol/l potassium iodate solution into a 1 litre one-mark volumetric flask, making up to the mark with water.

4.4.2 Formate buffer, pH 2,0

Add, from a graduated cylinder, 110 ml of formic acid (HCO_2H) (88-90%) (DANGER: < C > < B > < S > < F >) to a 1 litre one-mark volumetric flask containing 500 ml to 600 ml of water, and make up to the mark with water. Using a pH meter, adjust the solution to pH 2,0 \pm 0,1 at 21 °C with 10 mol/l sodium hydroxide solution (4.4.8) (DANGER: << C >>) from a dropping pipette.

4.4.3 Formate buffer, pH 2,8

Pipette 10,0 m of pH 2,0 formate buffer (4.4.2) into a 1 litre one-mark volumetric flask and make up to the mark with water.

ISO 417:19934.4.4 Eluent

4.2 Principle

https://standards.iteh.ai/catalog/standards/sistBisSolve 1,69 g420,16 g5 of potassium iodide (KI) and e9bace36405a/iso-411,69 g4 0,1 g of potassium monohydrogen phosphate

The eluent (4.4.4) is added to the sample to extract residual thiosulfate, tetrathionate and pentathionate ions. Formalin is added to form a complex with any sulfite ion present. Iodine is added to an amylose (fractionated linear potato starch) indicator to form a blue-coloured solution. The thiosulfate in the eluent, when added to the iodine-amylose solution will react with the iodine and proportionately reduce the intensity of the blue colour. The loss in colour corresponds to the thiosulfate concentration.

4.3 Chemical reactions

- a) Starch $(C_6H_{10}O_5)_n + I_2$ (in KI solution) \rightarrow Bluecoloured solution
- b) Blue-coloured solution + $S_2O_3^{2-} \rightarrow$ Decrease in blue colour intensity

 $170 \text{ g} \pm 0.1 \text{ g}$ of potassium nonohydrogen phosphate trihydrate (K₂HPO₄·3H₂O) and dilute to 1 litre with water. Using a pH meter, adjust to pH 8,5 at 21 °C by adding 0,5 mol/l sulfuric acid (4.4.9) dropwise from a dropping pipette.

4.4.5 Cadmium iodide-amylose reagent (Cdl₂-amylose)

NOTES

5 For an alternate reagent, see annex E.

6 Batches should be limited to 1 litre volumes.

Add and dissolve $11,0 \text{ g} \pm 1 \text{ g}$ of cadmium iodide (CdI₂) (DANGER: carcinogen³⁾) in 400 ml of water, and boil gently for 15 min. Add a further 400 ml of water and heat to boiling. Continue boiling and slowly add, with stirring, 5,0 g of amylose⁴⁾. Boil and stir for 5 min. Continue boiling and slowly add, with stirring,

²⁾ Pyrex[®] is an example of suitable glassware available commercially. This information is given for the convenience of users of this International Standard and does not consitute an endorsement by ISO of this product.

³⁾ Zinc iodide (Znl₂) has reportedly been used in at least two laboratories to avoid the use of cadmium iodide (Cdl₂). An equimolar amount of zinc iodide (9,59 g) is to be used.

⁴⁾ Examples of suitable commercially available amylose are Aldrich Chemical Company No. 85573-1, ICN Biomedical Inc. No. 100669, and Sigma No. A0512 (Type 3 from potato). This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.

5,0 g of acid-washed analytical filter aid.⁵⁾ Boil and stir for 5 min.

While the solution is still hot, filter it under a high vacuum, using a Buchner funnel (4.5.1.5) with the fine porosity filter paper (4.5.1.6), into a 1 litre vacuum flask. Transfer the filtrate to a 1 litre volumetric flask. Rinse the vacuum flask with water and add the rinsings to the volumetric flask. Dilute to 1 litre with water.

4.4.6 Sodium thiosulfate, $c(Na_2S_2O_3) = 0,100 0$ mol/l (15,8 g/l)6)

4.4.7 Formalin (DANGER: < B > < C > < S >)

4.4.8 Sodium hydroxide, c(NaOH) = 10 mol/l (DANGER: << C >>)

This solution can be prepared from sodium hydroxide (DANGER: << C >>).

4.4.9 Sulfuric acid, $c(H_2SO_4) = 0.5 \text{ mol/l}$

This solution can be prepared from sulfuric acid (1,84 g/ml approx.) (DANGER: << C>>).

4.5 Apparatus and glassware the STANDA

4.5.1 Apparatus

(standards.iteh.ai) 5 ml of cadmium iodide-amylose reagent (4.4.5)

4.5.1.1 Transmission spectrometer, suitable forso 417:195 ml of pH 2,0 formate buffer (4.4.2) recording optical absorbance over the wavelength standards/si range of interest, and a 5 cm cell.

4.8.4.

4.5.1.2 pH meter (see also clause 3).

4.5.1.3 Interval timer

4.5.1.4 Dropping pipettes (also known as medicine droppers) (as required).

4.5.1.5 Buchner funnel

4.5.1.6 Filter paper, 11,0 cm diameter; ashless; fine porosity (2,5 µm particle retention); slow flow (240 s for 100 ml prefiltered water); smooth surface; dense⁷⁾.

4.5.2 Glassware (see also 3.3)

All glassware shall be free from reducing or oxidizing materials. One way to assure this is to rinse the glassware with an iodide-iodine solution made from the following reagents.

Mix 10 ml of potassium iodate solution (4.4.1), 5 ml of pH 2,0 formate buffer, 5 ml of Cdl2-amylose reagent, and about 100 ml of water for a rinsing solution. Rinse glassware first with this solution and then with water.

4.6 Absorbance of blank solution

Run a reagent blank before and after the analyses of the samples. If the group of samples is large (greater than six), also run blanks in the middle of the group.

NOTE 7 In developmental and experimental work, absorbances of the blank have been between 0,70 and 0,80.

The blank absorbance is obtained by adding all the following reagents to a 50 ml one-mark volumetric flask:

10 ml of eluent (4.4.4)

1 ml of formalin (4.4.7) (< B > < C > < S >)

3 ml of pH 2,8 formate buffer (4.4.3)

5,0 ml of potassium iodate solution (4.4.1)

e9bace36405a/Swirl toomix, and make up to the mark with water. Stopper the flask and mix thoroughly. After 3 min, measure this solution as described in 4.8.3 and

4.7 Preparation of test sample

Analyse samples within 2 weeks of photographic processing.

4.7.1 Cut a 10 cm² strip of paper or film, obtained from a non-image area or an area of minimum density. Fold the strip into a "W" with the emulsion side inwards. Place the folded sample in a dry 30 ml beaker.

4.7.2 Add 10 ml of eluent (4.4.4) to the beaker. Swirl the beaker until the sample is completely immersed. Swirl again after 1 min and 5 min. Total elution time shall be 10 min for resin-coated (RC) paper, lightweight paper and single-weight paper. For medium-

7) Whatman® No. 42 filter paper is an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not constitue an endorsement by ISO of this product.

⁵⁾ A diatomaceous earth such as Aldrich Chemical Company No. 16,743-6, or BDH 33134-2K are examples of suitable materials. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.

⁶⁾ Commercially available analysed reagent solutions are recommended. Annex D provides a procedure for the preparation of standard sodium thiosulfate solution using sodium thiosulfate pentahydrate (Na₂S₂O₃·5H₂O).

weight or double-weight paper, the contact time with the eluent shall be increased to 20 min.

4.7.3 Add 1 ml of formalin (4.4.7) (< B > < C > < S >) to the beaker. Swirl, making sure that the solution reaches any droplets on the beaker wall. Allow a reaction time of 1 min.

4.7.4 Add 3 ml of pH 2,8 formate buffer (4.4.3). Swirl to reach any droplets on the beaker wall and allow 2 min for completion of the reaction. During these 2 min, pipette 5,0 ml of potassium iodate solution (4.4.1) into a 50 ml volumetric flask. Add 5 ml of cadmium iodide-amylose reagent (4.4.5) to the volumetric flask and swirl the flask. Add 5 ml of pH 2,0 formate buffer (4.4.2) to the volumetric flask and swirl the flask.

4.8 Colorimetric measurement

4.8.1 Set a timer for 3 min.

4.8.2 Transfer the liquid from the 30 ml beaker (4.7.4) to the 50 ml volumetric flask containing the iodine-amylose solution (4.7.4). Rinse the sample and beaker with 10 ml of water and transfer the rinsings to the 50 ml volumetric flask containing the reagent mixture (4.7.4). Make up to the mark with water and mix well.

4.8.3 After 3 min from the time of transfer, measure 7.122 the absorbance of the solution at 610 nm in a 5 cm add/sis glass cell versus air using the spectrometer (4:5:1.4)5a/iso-4

4.8.4 Convert the absorbance obtained into the level, $\rho_{\rm S}$, of thiosulfate ions (S₂O₃²⁻), in grams per square metre, from an appropriate calibration curve (4.9).

$$\Delta A = A_{\rm s} - A_{\rm h}$$

where

- ΔA is the absorbance difference;
- A_b is the absorbance of the blank solution;
- A_s is the absorbance of the test solution.

If A_s falls below 0,090, then re-extract the sample using a smaller sample. Correct the result then obtained from the calibration curve as follows:

$$\rho_{\rm S} = 10 \times \rho_{\rm C}/S$$

where

- $ho_{\rm C}$ is the level of ${\rm S_2O_3^{2-}}$ ions read from the calibration curve, in grams per square metre;
- *s* is the sample area, in square centimetres.

8)
$$1 \mu g/cm^2 = 10^{-2} g/m^2$$

Low levels of thiosulfate (0,001 g/m² to 0,009 g/m²) are generally achieved only in well-washed, fine-grain, black-and-white films.⁸⁾

4.9 Calibration, including blank

4.9.1 Prepare a stock sodium thiosulfate solution (0,001 0 mol/l) by pipetting 1,00 ml of 0,100 0 mol/l sodium thiosulfate (4.4.6) into a 100 ml one-mark volumetric flask. Make up to the mark with water.

4.9.2 Assuming a 10 cm² sample, pipette the volumes of stock solution given in table 1 into appropriately labelled 30 ml beakers.

Table 1 — Preparation of samples for calibration

Volume of stock solution	Equivalent $\rho_{\rm S}$	
μl	g/m²	µg/cm²
50 100 300 None	0,005 6 0,011 0,034 Blank	0,56 1,1 3,4 Blank

J PREVIEW

4.9.3 Extract the samples according to 4.7.2 by mixture (4.7.4). Make up to the mark with water and **4.9.3** Extract the samples according to 4.7.2 by adding the eluent (4.4.4) and continuing the procedure steps up to and including 4.8.3. The sample sizes **4.8.3** After 3 min from the time of transfer, measure and the absorbance of the himself the himself the absorbance of the himself the absorbance of the himself the absorbance of the himself the himself the absorbance of the himself the absorbance of the himself th

given in 4.9.2. If the sample has a gelatin coating on each side of the base, it may contain twice the level of thiosulfate ions as a sample coated on one side only.

4.9.4 Plot ΔA against ρ_{s} , in grams per square metre (for a 10 cm² sample).

5 Methylene blue method

5.1 Use

This method determines only thiosulfate. Procedures are specified to cover the range 0,001 g/m² to 0,45 g/m² (0,1 μ g/cm² to 45 μ g/cm²) of thiosulfate for fibre-based paper, film or plates.

5.2 Selection of the methylene blue method to cover the proper range

The methylene blue method consists of two separate procedures that permit a broad range of concentration to be covered. The range for Procedure I (5.7) is from $0,001 \text{ g/m}^2$ to $0,009 \text{ g/m}^2$ ($0,1 \ \mu\text{g/cm}^2$ to $0,9 \ \mu\text{g/cm}^2$) of thiosulfate and Procedure II (5.8) covers the range

from $0,009 \text{ g/cm}^2$ to $0,45 \text{ g/m}^2$ $(0,9 \ \mu\text{g/cm}^2$ to $45 \ \mu\text{g/cm}^2)$ of thiosulfate. In both procedures, the sample sizes and the volumes of the test solutions are such that no more than 0,01 g $(10 \ \mu\text{g})$ of thiosulfate is present. That ensures using only a straight-line calibration curve. The range covered for Procedure II was expanded by using a larger volume of eluent. An alternative, but less preferable, method of expanding the range is to use a smaller sample size. However, due caution shall be exercised to ensure a representative sample.

5.3 Principle

Residual thiosulfate that is extracted (eluted) from the sample is reduced by potassium borohydride to sulfide. The sulfide reacts with oxidized *N*,*N*-dimethyl-*p*-phenylenediamine (DP) to form methylene blue (MB). The absorbance of the blue colour is measured with a photometer or spectrometer. The thiosulfate level is determined from a calibration curve. A curve is to be prepared in each laboratory to eliminate errors due to variations in the reagents, equipment or technique, but it should approximate to the curve in figure 1.

figure 1. NOTE 8 The curve shown in figure 1 is only an example and is not to be used as a working calibration curve. A working calibration curve is to be established only by folds 417 mately 9) in the diluted acid. This reagent is stable for lowing the procedures described in this International Stan₅ standards least 8 months e9bace36405a/iso-417-1993

5.5.5 NND Reagent

To 89 ml of water in a beaker, carefully add, with stirring, 15 ml of sulfuric acid (1,84 g/ml approx.) (<< C>>). Dissolve 1,00 g \pm 0,01 g of *N*,*N*-dimethyl*p*-phenylenediamine sulfate in the diluted acid. Add 5 g of powdered activated carbon or a filter aid such as Florisil^{®11} (100 - 200 mesh) and stir the mixture for about 1 h to 2 h. Allow the absorbant to settle and filter the supernatant solution using prefolded medium-porosity filter paper (5.6.5)¹². If the solution is pink, repeat the decolourization process. This reagent is stable for at least 8 months.

5.4 Chemical reactions

The following reactions occur:

 $3H_2O + 2S_2O_3^{2-} + BH_4^- \rightarrow BH_4^-$

 $HS^{-} + 2HSO_{3}^{-} + H_{2}BO_{3}^{-} + 2H_{2}$

 $H_2S + 6Fe_2(SO_4)_3 + 2DP \rightarrow MB$

9) DANGER: Potassium borohydride is hazardous in the following ways.

- a) Personnel: Potassium borohydride is flammable and corrosive. It liberates hydrogen gas when in contact with water or acid and poisonous gases in the presence of acid. In concentrated form, it causes severe skin burns. Handle with extreme care and store in a bottle with a loose stopper.
- b) Sensitized materials: Potassium borohydride is a powerful fogging agent. Avoid contamination of unprocessed film, paper and processing solutions. Thoroughly wash hands and equipment after the use of solid borohydride or borohydride reagent.

10) Also known as potassium tetrahydroborate.

11) Florisil[®] is an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not consitute an endorsement by ISO of this product.

12) Whatman® No. 2V filter paper is an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.

5.5 Reagents

5.5.1 Eluent

Dissolve 1,0 g \pm 0,1 g of potassium iodide (KI), 20,0 g \pm 0,1 g of potassium bromide (KBr) and 1,0 g \pm 0,1 g of potassium dihydrogen phosphate (KH₂PO₄) in 1 litre of water. This reagent is stable for at least 8 months.

5.5.2 Borohydride reagent

Dissolve 3,0 g of fresh potassium borohydride⁹⁾¹⁰ (KBH₄) (DANGER: < C > < B > < F >) in 100 ml of sodium hydroxide solution (5.5.6). This reagent is stable for 1 week in a cool place. Package solutions to be used beyond 1 week in small individual bottles which, once opened, are discarded at the end of the day.

To 89 ml of water in a beaker, carefully add, with

5.5.3 Acetone

5.5.4 Ferric sulfate reagent

6

5.5.6 Sodium hydroxide solution, c(NaOH) = 0,20mol/l (8,0 g/l)13)

5.6 Apparatus and glassware (see also clause 3)

See 4.5.2 for details of the cleaning of glassware.

5.6.1 Sample vials, of 11 ml capacity, with polyethylene caps; four are required.

5.6.2 Glass or plastic trays, for plates.

The trays shall be only slightly larger than the plates, for elution.

5.6.3 Dropping pipettes, four are required.

5.6.4 Visible photometer or spectrometer, with 1 cm cells.

5.6.5 Filter paper, prefolded, medium porosity (8 μ m particle retention); medium flow (55 s for 100 ml prefiltered water) (15 cm² folded paper).¹²⁾

5.7.1.2 Plates

Take samples from an area of minimum density. Cut a 10 cm² sample and place it, photographic layer up, in a glass or plastic tray that is only slightly larger than the plate. Add 5,0 ml of eluent (5.5.1) and allow 10 min for elution, accompanied by a gentle rocking action. Transfer as much of the eluent as possible into a sample vial (5.6.1). Continue according to the procedure given in 5.7.1.3.

If destruction of the plate is undesirable, im-NOTE 10 merse the entire plate in a tray slightly larger (0,5 cm on each side) than the plate and elute as above, but use a larger volume of eluent (5.5.1), keeping the proportion of eluent to plate area constant. After elution, place 5 ml of the resulting test solution into a sample vial (5.6.1). Continue the procedure given in 5.7.1.3. Save the remainder of the test solution for possible use in step 5.8.1.1. If it is to be used, dilute it five-fold. Wash the plate after testing, to remove residual eluent.

Fill four dropping pipettes in readiness with the fol-

5.7.1.3 Film and plates

l'eh NDA 5.7 Procedure I: Low levels of thiosulfate lowing four reagents: ions, 0,001 g/m² to 0,009 g/m² (0,1 µg/cm² to 0,5 ite borohydride reagent (5.5.2) $0,9 \ \mu g/cm^2$)

This level of $S_2 O_3^{2-}$ is generally attained in only 17:1993 acetone (5.5.3) NOTE 9 2-9615well-washed, fine-grain, blacksand-white film, Rcapaper and ards/sist/2e96918c-2fd9-482 plates. For higher levels, such as in many coloubproducts a/iso-417-1ferric sulfate reagent (5.5.4) use Procedure II (see 5.8) or the silver densitometric method (see clause 6). If the sample has gelatin backing, NND reagent (5.5.5) the backing layer may contain as much thiosulfate as the emulsion layer. The test method measures the total thiosulfate. Fibre-based paper is not included in this procedure because this paper usually contains higher levels of $S_2O_3^{2-}$.

5.7.1 Preparation of test sample

Analyse samples within 2 weeks of photographic processing.

5.7.1.1 Film

Obtain a 10 cm² sample (for example, 6,25 cm × 16 mm without perforations), taken from an area of minimum density. Place the sample in a clean, dry sample vial (5.6.1) by folding the film into a "W' shape with the emulsion side inwards. Add 5,0 ml of eluent (5.5.1) and allow the mixture to stand for 10 min with occasional swirling. Remove the sample with plastic-tipped tweezers, being careful to drain the sample. Continue according to the procedure given in 5.7.1.3.

After addition of the borohydride reagent, complete the following additions within 15 s:

- a) add 5 drops of the borohydride reagent (5.5.2); swirl to mix:
- b) add 10 drops of acetone (5.5.3); swirl to mix;
- c) add 5 drops of the ferric sulfate reagent (5.5.4) and 5 drops of NND reagent (5.5.5).

Cap immediately. Hold cap on firmly and shake the vial vigorously for 30 s, being careful that the top of the vial is pointed away from the face. Vent the pressure formed by evolved hydrogen. Cap the vial again, shake it vigorously again for 30 s, and vent. Allow the test solution to stand until the pink colour (Wurster's salt) has disappeared (3 min to 5 min).

If a pink solution does not form, a high level of thiosulfate has exhausted some of the reagents and the sample shall be treated as in 5.8.1.1.

¹³⁾ Commercially available analysed reagent solution is recommended. A procedure for the preparation of this is given in annex C.