INTERNATIONAL STANDARD

Second edition 2009-08-15

Nuclear energy — Nuclear fuel technology — Determination of plutonium in nitric acid solutions by spectrophotometry

Énergie nucléaire — Technologie du combustible nucléaire — Détermination du plutonium dans les solutions d'acide nitrique par **iTeh ST**spectrophotométrie **PREVIEW**

(standards.iteh.ai)

<u>ISO 9463:2009</u> https://standards.iteh.ai/catalog/standards/sist/4691c803-ae5d-489e-81d1c47782945df2/iso-9463-2009

Reference number ISO 9463:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9463:2009</u> https://standards.iteh.ai/catalog/standards/sist/4691c803-ae5d-489e-81d1c47782945df2/iso-9463-2009

COPYRIGHT PROTECTED DOCUMENT

© ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Page

	reword	
Intro	roduction	v
1	Scope	1
2	Normative references	1
3	Principle	
4	Chemical conditions	1
5	Reagents	
6	Apparatus	
7	Measurements	3
8	Expression of the results	6
9	Interferences	

iTeh STANDARD PREVIEW (standards.iteh.ai)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9463 was prepared by Technical Committee ISO/TC 85, *Nuclear energy*, Subcommittee SC 5, *Nuclear fuel technology*.

This second edition cancels and replaces the first edition (ISO 9463:1990), which has been technically revised. (standards.iteh.ai)

Introduction

This International Standard specifies an analytical method for determining the plutonium concentration in nitric acid solutions of dissolution of nuclear reactor irradiated fuels. The method is devoted to process controls at the different steps of the process in a nuclear fuel reprocessing plant.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

Nuclear energy — Nuclear fuel technology — Determination of plutonium in nitric acid solutions by spectrophotometry

1 Scope

This International Standard specifies an analytical method by spectrophotometry for determining the plutonium concentration of nitric acid solutions in reprocessing plants. The method is applicable, without interference, in the presence of numerous cations, with a standard deviation of about 5 %, where the concentration of plutonium in the solution is at least $0.5 \text{ mg} \cdot \text{l}^{-1}$.

2 Normative references

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods

3 Principle iTeh STANDARD PREVIEW

Plutonium is quantitatively oxidized to the hexavalent state either with cerium(IV) or with silver oxide, the excess of which is destroyed by the addition of sulfamic acid.

ISO 9463:2009

The optical density of the RuO 2 to absorption apeaks at the wavelength of 831-nm is then measured on a spectrophotometer. The result is obtained by comparison to a calibration performed under similar conditions (with the same nitrate content).

4 Chemical conditions

4.1 Stability of plutonium(VI)

Plutonium(VI) is very stable under the operating conditions of the method over the range $2 \text{ mol} \cdot I^{-1} < c [H^+] < 5 \text{ mol} \cdot I^{-1}$.

4.2 Rate of oxidation of plutonium(IV) to plutonium(VI)

The rate of oxidation by cerium(IV) decreases as the acidity increases. With the reagent quantities stated in the method, the oxidation is complete in 5 min in 2 mol· l^{-1} or 3 mol· l^{-1} nitric acid.

With silver oxide, the oxidation is very fast, much faster than with cerium(IV).

4.3 Destruction of the excess oxidant

With cerium(IV), the excess reagent does not interfere and it is not necessary to destroy it.

With silver oxide as oxidant, it is necessary to destroy the excess reagent by reaction with a small excess of sulfamic acid or by heating to about 80 °C.

4.4 Molar extinction coefficient of plutonium(VI)

The molar extinction coefficient and, therefore, absorbance can vary according to a number of parameters, for example:

- nitrate ion concentration: the decrease in molar extinction coefficient becomes more pronounced at higher nitrate levels; at about 3 mol·l⁻¹ nitrate, an increase of 0,1 mol·l⁻¹ in the total nitrate content causes a decrease of about 0,7 % in the molar extinction coefficient;
- acidity: this change is generally less than 0,1 % for a free acid change of 0,1 mol·l⁻¹; thus the influence of free acidity is an order of magnitude less than that of the nitrate content;
- temperature: the decrease in molar extinction coefficient is about 0,5 % per degree Celsius.

5 Reagents

5.1 General

All reagents shall be of analytical grade.

This procedure uses $3 \text{ mol} \cdot l^{-1}$ nitric acid as this permits the use of either cerium(IV) or silver oxide as the oxidant and is convenient for most applications. It is acceptable to use cerium(IV) as oxidant at lower acidities and silver oxide as oxidant at higher acidities, provided that the concentration of the nitric acid used for calibration is similarly adjusted.

5.2 Common reagents for methods using silver oxide or cerium as oxidant

5.2.1 Nitric acid, $c(HNO_3) = (3 \pm 0.05 \text{ mol·}l^{-1})$. <u>ISO 9463:2009</u> https://standards.iteh.ai/catalog/standards/sist/4691c803-ae5d-489e-81d1-

5.2.2 Water, complying with grade 3 of ISO 3696:1987.

5.2.3 Plutonium, plutonium reference solution in nitric acid with a plutonium concentration and a nitrate concentration close to that of the sample being analysed.

5.3 Method using silver oxide as oxidant

5.3.1 Sulfamic acid, $c(NH_2SO_3H) = 0.5 \text{ mol·}I^{-1}$ solution in water $w(NH_2SO_3H) = 48.5 \text{ g}\cdot I^{-1}$.

5.3.2 Silver oxide (AgO).

This reagent can be prepared in a number of ways, such as the following.

- Dissolve 72 g of sodium hydroxide (5.3.3) in 1 l of water (5.2.2) in a very clean Pyrex conical flask or beaker and heat to 85 °C.
- Add, while stirring, 75 g of potassium persulfate $(K_2S_2O_8)$ (5.3.4) to the hot solution.

WARNING 1 — Never use ammonium persulfate on account of explosion risks.

- Add, whilst still stirring, a solution of 51 g of silver nitrate (5.3.5) in a minimum of water (about 40 ml) (5.2.2). Heat the mixture to 90 °C and stir for 15 min.
- Allow to cool, and then filter with a No. 4 glass frit.

- Wash with 0,25 mol·l⁻¹ sodium hydroxide solution (10 g·l⁻¹) until free from sulfate ions, as verified by testing the effluent solution for precipitation with barium; the volume necessary is generally between 0,5 l and 1 l.
- Wash with water until neutral.
- Dry with compressed air at room temperature, stirring occasionally with care to form a powder; use a sieve if necessary.

WARNING 2 — Never dry at a temperature above 35 °C as there is a risk of explosion.

- Dry in a desiccator at room temperature for one day and store in a stoppered, brown glass bottle.
- 5.3.3 Sodium hydroxide, (NaOH).
- 5.3.4 Potassium persulfate, $(K_2S_2O_8)$.
- 5.3.5 Silver nitrate solution, [Ag(NO₃)₂].

5.4 Method using cerium(IV) as oxidant

Cerium(IV), $c(Ce^{4+}) = 0.4 \text{ mol} \cdot I^{-1}$ in a nitrate medium. 5.4.1

This reagent can be prepared in a number of ways, such as the following: **en standard**

Dissolve 219,3 g of ceric ammonium nitrate [(NH₄)₂Ce(NO₃)₆] (5.4.2) in 600 ml of 1 mol·l⁻¹ nitric acid (5.4.3) and dilute to 1 I with water (5.2.2).

5.4.2 Ceric ammonium nitrate, [(NH₄)₂Ce(NO4)₆]2009 https://standards.iteh.ai/catalog/standards/sist/4691c803-ae5d-489e-81d1-

Nitric acid, $c(HNO_3) = 1 \text{ mol} \cdot I^{\pm 17782945} df 2/iso-9463-2009$ 5.4.3

Apparatus 6

Usual nuclear laboratory equipment.

Spectrophotometer, high-quality, double-beam, grating, or equivalent, designed for measurements on 6.1 fully contained high beta-gamma solutions and having, as far as possible, the following features:

- fluctuation below 0,001 absorbance; a)
- b) stable baseline;
- useful spectral range at least up to 1 100 nm. C)

7 Measurements

To realize this operating mode, given as an example, the varying concentrations and/or volumes, in particular concentration and/or volume of reference solution, flask volume, etc., may be modified if needed.

The spectrophotometer shall be calibrated with a plutonium calibration solution to determine the relationship between plutonium concentration and absorbance.

The frequency of this calibration is chosen in accordance with the required accuracy of the analysis.