International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION+MEXDYHAPODHAR OPFAHИЗAЦИЯ ПО СТАНДАРТИЗАЦИИ+ORGANISATION INTERNATIONALE DE NORMALISATION

Wrought copper-aluminium alloys — Chemical composition and forms of wrought products

Alliages cuivre-aluminium corroyés - Composition chimique et formes des produits corroyés

Second edition – 1983-10-15 iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 428:1983</u> https://standards.iteh.ai/catalog/standards/sist/d5b8515c-4c86-4913-9a0d-5db37ec1f016/iso-428-1983

UDC 669.35.71-13

Ref. No. ISO 428-1983 (E)

Descriptors : copper alloys, aluminium-containing alloys, aluminium bronzes, chemical composition, wrought products.

Price based on 3 pages

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 428 was developed by Technical Committee ISO/TC 26, Copper and copper alloys, and was circulated to the member bodies in November 1981.

It has been approved by the member bodies of the following countries 983

https://standards.iteh.ai/catalog/standards/sist/d5b8515c-4c86-4913-9a0d-

Austria	France 5db37e	ec11016/iso-428-1983 Romania
Belgium	Germany, F.R.	South Africa, Rep. of
Brazil	Hungary	Spain
Bulgaria	Italy	Sweden
Canada	Japan	Switzerland
China	Korea, Dem. P. Rep. of	Turkey
Czechoslovakia	Netherlands	United Kingdom
Egypt, Arab Rep. of	Norway	USA
Finland	Poland	USSR

No member body expressed disapproval of the document.

This second edition cancels and replaces the first edition (i.e. ISO 428-1973).

[©] International Organization for Standardization, 1983 •

Wrought copper-aluminium alloys – Chemical composition and forms of wrought products

1 Scope and field of application

ISO 4382/2, Plain bearings — Copper alloys — Part 2: Wrought copper alloys for solid plain bearings.

This International Standard specifies the chemical composition of wrought copper-aluminium alloys and lists the forms of wrought products in which they are currently available in com **S.13 Definitions** mercial quantities.

ISO 428:1983 For the purpose of this International Standard, the definitions https://standards.iteh.ai/catalog/standards/sist/d508515c-4c80-4913-9a0d-

2 References

5db37ec1f016/iso-428-1983

100 107 0. ("

ISO 197, Copper and copper alloys — Terms and definitions Part 1: Materials. Part 3: Wrought products.

ran 5. Wrought products.

ISO 1190/1, Copper and copper alloys – Code of designation – Part 1 : Designation of materials.

ISO 1634, Wrought copper and copper alloys – Mechanical properties

Part 1: Plate, sheet and strip for general purposes.¹⁾ Part 2: Plate and sheet for boilers, pressure vessels and condensers.¹⁾

ISO 1635, Wrought copper and copper alloys – Round tubes for general purposes – Mechanical properties.¹⁾

ISO 1637, Wrought copper and copper alloys — Rod and bar — Mechanical properties. $^{2\mathrm{)}}$

ISO 1640, Wrought copper alloys – Forgings – Mechanical properties.²⁾

4 Chemical composition

The chemical composition of the copper alloys is given in tables 1 and 2. The composition limits do not preclude the possible presence of other elements not specified. If the purchaser's requirements necessitate limits for any other element not specified, these shall be agreed upon between the supplier and the purchaser. Percentage content of elements shown as "remainder" is usually calculated by difference from 100 %.

The designations used are in accordance with the principles laid down in ISO 1190/1.

5 Forms of wrought products and mechanical properties

The forms of wrought products in which these copper alloys are available are given in table 3. The mechanical properties for all forms of wrought products for which the symbol X is given, are defined in the following International Standards :

ISO 1634/1, ISO 1634/2, ISO 1635, ISO 1637, ISO 1639, ISO 1640.

¹⁾ At present at the stage of draft.

²⁾ Under revision.

Designation	Element	Chemical composition by mass, %							Average	
		Cu	AI	As	Fe	Mn	Ni	Pb	Zn ¹⁾	density kg/dm ³
CuAI5	min. max.	Rem.	4,0 6,5							8,2
CuAl7	min. max.	Rem.	6,5 7,5			0,5	0,8	 0,1		7,9
CuAl8	min. max.	Rem.	7,5 9,0			 0,5				7,8

Table 1 – Copper-aluminium alloys

1) When the product is for subsequent welding applications and so specified by the purchaser, the Zn content is max. 0,2 %.

iTeh STANDARD PREVIEW

Table 2 Special copper aluminium alloys

NOTE - For certain applications, tighter limits than shown in the table may be agreed upon between supplier and purchaser.

		httpa	https://standards.itah.si/a@hamidahdanip/sittlefile/file/file/file/file/file/file/fil								Average	
Designation	Element	https://standards.iten.arcimiterigioarinerigiositeriooy/fidass.com-4913-9800-									density	
2 congristion		Cu	AI	Fe ⁵	db3/ec11	016/1so-4	28-N983	Pb	Si	Sn	Zn ¹⁾	kg/dm ³
CuAl7Fe3Sn	min. max.	Rem.	6,0 8,0	1,5 3,5	-	 1,0	 1,0	0,05	-	0,15 0,50	 0,5	7,7
CuAI7Si2	min. max.	Rem.	6,0 7,6	 0 <i>,</i> 80	_	 0,10		 0,05	1,5 2,4			7,7
CuAl8Fe3	min. max.	Rem.	6,5 8,5	1,5 3,5		 1,0	_ 1,0	0,05	_	_	 0,5	7,7
CuAl9Fe4Ni4 ³⁾	min. max.	Rem.	8,0 11,0	2,5 4,5	_	3,0	2,5 5,0	0,1	0,1		 0,5	7,6
CuAl9Mn2	min. max.	Rem.	8,0 10,0	 1,5	-	1,5 3,0	0,8	 0,05	_	_		7,5
CuAl9Ni3Fe2	min. max.	Rem.	8,0 9,5	1,0 3,0	_ 0,05	_ 2,5	1,5 4,0	 0,05		 0,20	 0,20	7,5
CuAl10Fe3	min. max.	Rem.	8,5 11,0	2,0 4,0	_ _		 1,0	 0,05				7,6
CuAI10Ni5Fe4	min. max.	Rem.	8,5 11,0 ²⁾	2,0 5,0		 1,5	4,0 6,0	0,05	_	_		7,6

1) When the product is for subsequent welding applications and so specified by the purchaser, the Zn content is max. 0,2 %.

2) Al content to be less than 8,5 plus half the Ni content.

3) Mainly for wear resistance applications, e.g. plain bearings according to ISO 4382/2.

Table 3 – Forms of wrought products

KEY :

X - main manufactured forms.

(X) - forms manufactured in smaller quantities, for example in certain countries only or for special purposes.

NOTE – Where no symbol is given, the form is not considered of importance for that type of copper alloy, but it does not necessarily indicate that such a product cannot be manufactured.

Designation	Plate, General purpose	sheet Boilers	St General purpose	rip Springs	Tu General purpose	bes Condenser	Rod, bar	Wire	Extruded profiles ¹⁾	Forgings		
Copper-alumin	ium alloys		(Sta	indar	ds.ite	h.a í)	•					
CuAI5		х	х		X	(X)	(X)	(X)				
CuAl7	х	X		<u>ISO 4</u>	28:1983	0.51.5 4.07	X	(X)		(X)		
CuAl8	х	https://stand	ards.iteh.ai/c	atalog/stand	$\frac{1}{(X)}$	8515C-4C80	-4913-9a00	- (X)		(X)		
Special copper	Special copper-aluminium alloys											
CuAl7Fe3Sn		X			(X)		(X)	(X)				
CuAI7Si2	Х						х					
CuAl8Fe3		х					х					
CuAl9Fe4Ni4			(X) ²⁾				(X) ²⁾					
CuAl9Mn2							х			х		
CuAl9Ni3Fe2		Х					(X)					
CuAl10Fe3							х		(X)	х		
CuAI10Ni5Fe4		X			(X)		х		(X)	х		

1) Made by extruding or a combination of extruding and drawing.

2) Mainly for wear resistance applications, e.g. plain bearings according to ISO 4382/2.

iTeh STANDARD PREVIEW This page intentionally left blank (standards.iten.a)

ISO 428:1983 https://standards.iteh.ai/catalog/standards/sist/d5b8515c-4c86-4913-9a0d-5db37ec1f016/iso-428-1983

;

iTeh STANDARD PREVIEW This page intentionally left blank (Standard St. Left blank)

<u>ISO 428:1983</u> https://standards.iteh.ai/catalog/standards/sist/d5b8515c-4c86-4913-9a0d-5db37ec1f016/iso-428-1983

3

iTeh STANDARD PREVIEW This page intentionally left blank (Standard St. Left blank)

<u>ISO 428:1983</u> https://standards.iteh.ai/catalog/standards/sist/d5b8515c-4c86-4913-9a0d-5db37ec1f016/iso-428-1983