

Designation: A 965/A 965M - 05

Standard Specification for Steel Forgings, Austenitic, for Pressure and High Temperature Parts¹

This standard is issued under the fixed designation A 965/A 965M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This specification covers austenitic stainless steel forgings for boilers, pressure vessels, high temperature parts, and associated equipment.

1.2 Supplementary requirements are provided for use when additional testing, inspection, or processing is required. In addition, supplementary requirements from Specification A 788 may be specified when appropriate.

1.3 This specification includes the austenitic steel forgings that were a part of A 336/A 336M.

1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.5 Unless the order specifies the applicable "M" specification designation, the material shall be furnished to the inchpound units.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: ²

- A 336/A 336M Specification for Alloy Steel Forgings for Pressure and High-Temperature Parts
- A 370 Test Methods and Definitions for Mechanical Testing of Steel Products
- A 788 Specification for Steel Forgings, General Requirements

E 112 Test Methods for Determining the Average Grain Size 2.2 *Other Standards:*

ASME Boiler and Pressure Vessel Code, including Section VIII Pressure Vessels and Section IX Welding Qualifications³

3. Ordering Information and General Requirements

3.1 In addition to the ordering information required by Specification A 788, the intended use should be stated if 5.1 is to be applicable.

3.2 Material supplied to this specification shall conform to the requirements of Specification A 788, which outlines additional ordering information, manufacturing requirements, testing and retesting methods and procedures, marking, certification, product analysis variations, and additional supplementary requirements.

3.3 If the requirements of this specification are in conflict with the requirements of Specification A 788, the requirements of this specification shall prevail.

3.4 If the forgings are intended for use under the ASME Boiler and Pressure Vessel rules at temperatures exceeding 1000°F [540°C], then use Supplementary Requirement S7. Grain size requirements for service exceeding 1000°F [540°C] should be specified unless the required grade has the suffix "H."

4. Melting and Forging

4.1 In addition to the melting and forging requirements of Specification A 788, which may include Supplementary Requirement S8, the following condition applies:

4.1.1 A sufficient discard shall be made to secure freedom from injurious pipe and undue segregation.

5. Machining

5.1 Forged pressure vessels for steam power service shall have the inner surface machined or ground. Unfired pressure vessels shall have the inner surfaces sufficiently free of scale to permit inspection.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.06 on Steel Forgings and Billets.

Current edition approved Dec. 1, 2005. Published December 2005. Originally approved in 1996. Last previous edition approved in 2002 as A 965/A 965M - 02^{ϵ_1} .

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990.

5.2 When rough machining is performed, it may be done either before or after heat treatment.

6. Heat Treatment

6.1 Forgings shall be furnished in the solution treated condition. On completion of forging operations, the forgings shall be solution annealed and quenched in water, oil, or a polymer water solution. Direct quenching after completion of forging without subsequent reheating to the temperatures prescribed in 6.2-6.5 is not permissible.

6.2 For Grades F304H, F309H, F310H, F316H, F321H, F347H, and F 348H, the minimum solution annealing temperature shall be 1925°F [1050°C].

6.3 Grades FXM-11 and FXM-19 shall be solution annealed at 1950°F [1065°C].

6.4 Grade F46 shall be solution annealed in the temperature range of 2010–2140°F [1100–1170°C].

6.5 The remaining grades in Table 1 shall be solution annealed at a minimum temperature of 1900°F [1040°C].

7. Chemical Composition

7.1 *Heat Analysis*—The heat analysis obtained from sampling in accordance with Specification A 788 shall comply with Table 1.

7.2 *Product Analysis*—The manufacturer shall use the product analysis provision of Specification A 788 to obtain a product analysis from a forging representing each heat or multiple heat.

7.3 Types (common names) and UNS designations follow:

Grade	Туре	UNS Designation
5004	004	000400
F304	304	S30400
F304H	304H	S30409 A96
F304L	304L	S30403
F304N	ards.iten.a304N alog/stat	10ar08/\$3045100ac0e1
F304LN	304LN	S30453
F309H	309H	S30909
F310	310	S31000
F310H	310H	S31009
F316	316	S31600
F316H	316H	S31609
F316L	316L	S31603
F316N	316N	S31651
F316LN	316LN	S31653
F321	321	S32100
F321H	321H	S32109
F347	347	S34700
F347H	347H	S34709
F348	348	S34800
F348H	348H	S34809
FXM-19	XM19	S20910
FXM-11	XM11	S21904
F46		S30600
F46		530000

8. Mechanical Properties

8.1 *Requirements*—The material shall conform to the requirements for mechanical properties prescribed in Table 2 and Supplemental Requirement S2. The largest obtainable tension test specimen as specified in Test Methods and Definitions A 370 shall be used.

8.2 *Number of Tests*—The number and location of tests are based on the heat-treated weight of the forging(s) from the same heat, solution annealed in the same furnace charge.

8.2.1 For forgings weighing less than 5000 lb [2250 kg] as heat treated, one tension test shall be required. This shall be taken from a prolongation of one of the forgings from the same heat in the same heat treatment load.

8.2.2 When heat treatment is performed in continuous type furnaces equipped with recording pyrometers, such that complete heating records are available, a solution annealing charge may be considered as any continuous run not exceeding an 8 h period.

8.2.3 For forgings weighing over 5000 lb [2250 kg], as heat treated, one tension test shall be taken from a prolongation on each forging.

8.3 The longitudinal axis of the tension test specimen shall be parallel to the direction of major working of the forging, except when Supplementary Requirement S2 is specified. For upset disk forgings the longitudinal axis of the specimen shall be in either the tangential or radial direction.

8.3.1 The location of the longitudinal axis of the tension test specimen shall be located midway between the parallel surfaces of the test extension, if added to the periphery of disks, or midway between the center and surface of solid forgings. For hollow forgings, or those heat treated after boring, the specimen shall be located at midwall. For the special case of forgings that are heat treated solid, but are subsequently bored, the tension test specimen may be taken at the location of the minimum inside diameter after boring instead of the mid-radius position.

9. Grain Size

9.1 For Grades F304H, F316H, F309H, F310H, F321H, F347H, and F348H, the grain size of the forgings shall be ascertained according to Test Methods E 112, after solution treatment. One sample shall be examined for each tensile specimen required in 8.2 and shall be taken from the tension test location. The grain size shall be number 6, or coarser, over at least 75 % of the surveyed area.

10. Repair Welding

10.1 Repair welding of forgings may be permitted but only at the option of the purchaser. Such repair welds shall be made in accordance with Section IX of the ASME Boiler and Pressure Vessel Code.

11. Marking

11.1 The marking requirements of Specification A 788 apply.

12. Test Reports

12.1 The certification requirements of Specification A 788 shall apply.

13. Keywords

13.1 austenitic stainless steel forgings; high temperature service; pressure containing parts; pressure vessel service

						TADLE	Chemi	cal nequ	memen	13												
									Au	stenitic S	Steels											
										Grade												
Element	F 304	F 304H	F 304L	F 304N	F 304LN	F 309H	F 310	F 310H	F 316	F 316H	F 316L	F 316N	F 316LN	F 321	F 321H	F 347	F 347H	F 348	F 348H	FXM- 19	FXM- 11	F46 ^A
Carbon	0.08 max	0.04– 0.10	0.030 max	0.08 max	0.030 max	0.04– 0.10	0.15 max	0.04– 0.10	0.08 max	0.04– 0.10	0.035 max	0.08 max	0.030	0.08 max	0.04– 0.10	0.08 max	0.04– 0.10	0.08 max	0.04– 0.10	0.06 max	0.04 max	0.018 max
Manganese	2.00 max	2.00 max	2.00 max		2.00 max				2.00 max	2.00 max	2.00 max	2.00	2.00 max		2.00 max	2.00 max			2.00			2.00 max
Phosphorus, max	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0. <mark>0</mark> 45	0.045	0.045	0.040			0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.020
Sulfur, max Silicon	0.030 1.00 max	0.030 1.00 max	0.030 1.00	0.030 1.00 max	0.030 1.00 max	0.030 1.00 max		0.030 1.00 max	0.030 1.00 max	0.030 1.00 max	0.030 1.00 max	0.030 1.00 max		0.030 1.00 max	0.030 1.00 max	0.030 1.00 max	0.030 1.00	0.030 1.00	0.030 1.00	1.00	0.030 1.00 max	0.020 3.7– 4.3
Nickel	8.0– 11.0	8.0– 11.0	8.0– 12.0	8.0– 11.0	8.0– 11.0			19.0– 22.0	10.0– 14.0	10.0– 14.0	10.0– 15.0	10.0-		9.0-12.0			9.0– 12.0	9.0– 12.0	9.0– 12.0		5.5– 7.5	14.0– 15.5
Chromium	18.0– 20.0	18.0– 20.0	18.0– 20.0	18.0– 20.0				24.0– 26.0	16.0– 18.0	16.0– 18.0	16.0– 18.0	16.0– 18.0	18.0	17.0- 19.0	17.0– 19.0		17.0– 19.0	17.0– 19.0			19.0– 21.5	17.0– 18.5
Molybdenum								 A	2.00– 3.00	2.00- 3.00 5/	2.00– 3.00 <u>5</u>	3.00	2.00– 3.00							1.50– 3.00		0.20 max
Nitrogen				0.10– 0.16	0.10– 0.16		 //sta	ndards.	iteh.ai/	catalo	 g/stan	11 1 1	0.10– 0.16	0.10 max						0.40	0.15– 0.40	
Columbium and tan- talum							··4bf	‡-a538	892b	2ïb94	513/a	stm-a	965-8	i 965		В	8×C min to 1.10 max	10×C min to 1.10 max	8×C min to 1.10 max	0.10– 0.30		
Titanium Tantalum		 		 										с 	D 		···	 0.10 max	 0.10 max		···	
Vanadium																				0.10– 0.30		
Cobalt, max																		0.020	0.020			
UNS Designation	S30400	S30409	S30403	S30451	S30453	S30909	S31000	S31009	S31600	S31609	S31603	S31651	S31653	S32100	S32109	S34700	S34709	S34800	S34809	S20910	S21904	S30600

TABLE 1 Chemical Requirements

^A F46 shall have a maximum copper content of 0.50. ^B F347 shall have a columbium content of not less than ten times the carbon content and not more than 1.10 %. (Alternatively, tantalum may be substituted for part of

the columbium as approved by the purchaser.) c F321 shall have a titanium content of not less than 5x (C+N) and not more than 0.70 %. p F321H shall have a titanium content of not less than 4x (C+N) and not more than 0.70 %.

ω

A 965/A 965M -

о С