INTERNATIONAL STANDARD

First edition 2007-08-15

Soil quality — Determination of arsenic, antimony and selenium in aqua regia soil extracts with electrothermal or hydride-generation atomic absorption spectrometry

iTeh ST dans des extraits du sol à l'eau régale par spectrométrie d'absorption atomique avec atomisation électrothermique ou génération d'hydrures

<u>ISO 20280:2007</u> https://standards.iteh.ai/catalog/standards/sist/a16246fc-25a7-490f-a134b424e5c0c254/iso-20280-2007

Reference number ISO 20280:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 20280:2007</u> https://standards.iteh.ai/catalog/standards/sist/a16246fc-25a7-490f-a134b424e5c0c254/iso-20280-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forew	vord	iv
1	Scope	1
2	Normative references	1
3	Principle	1
4	Reagents	2
5	Apparatus	4
6 6.1 6.2	Procedure Test portion Aqua regia extraction for arsenic, antimony and selenium Black test solution	555
7 7.1 7.2 7.3 7.4 7.5	Method A — Electrothermal atomic absorption spectrometry: Preparation of calibration solutions and measurement General Calibration solutions for arsenic Calibration solutions for antimony D.A.R.D. P.R.E.V.H.W. Calibration solutions for selenium. Calibration and determination with ETAAS measurement.	555566
8 8.1 8.2 8.3 8.4	Method B — Hydride-generation atomic absorption spectrometry: Preparation of calibration solutions and measurement	7 7 7 7 7 8
9	Plotting the calibration graph	8
10 10.1 10.2	Calculation General Calculation according to the method of standard additions	8 8 9
11	Expression of results	9
12	Interferences	9
13	Precision	0
14	Test report	14
Biblio	graphy	15

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20280 was prepared by Technical Committee ISO/TC 190, *Soil quality*, Subcommittee SC 3, *Chemical methods and soil characteristics*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 20280:2007</u> https://standards.iteh.ai/catalog/standards/sist/a16246fc-25a7-490f-a134b424e5c0c254/iso-20280-2007

Soil quality — Determination of arsenic, antimony and selenium in aqua regia soil extracts with electrothermal or hydride-generation atomic absorption spectrometry

WARNING — Certain procedures, reagents and apparatus used in this International Standard pose hazards, especially in connection with concentrated acids, toxic solutions of arsenic (As), antimony (Sb) and selenium (Se), and high-pressure gases. Users should ensure that they are familiar with the safety procedures necessary in such situations, and with any legal requirements (including waste disposal). If in any doubt, seek advice from the competent authorities.

1 Scope

This International Standard specifies methods for the determination of arsenic, antimony and selenium, in an aqua regia extract of soil obtained in accordance with ISO 11466, by electrothermal or hydride-generation atomic absorption spectrometry.

iTeh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. Seor 200 dated references, the latest edition of the referenced document (including any amendments) applies: tandards/sist/a16246fc-25a7-490f-a134b424e5c0c254/iso-20280-2007

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods

ISO 11464:2006, Soil quality — Pretreatment of samples for physico-chemical analysis

ISO 11465:1993, Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method

ISO 11466:1995, Soil quality — Extraction of trace elements soluble in aqua regia

3 Principle

Arsenic, antimony and selenium are extracted from soil samples with aqua regia according to ISO 11466. Arsenic, antimony and selenium are determined by electrothermal atomic absorption spectrometry (ETAAS), in which discrete volumes of sample solution are dispensed into a graphite tube. By increasing the temperature of this graphite tube stepwise, the processes of drying, thermal decomposition of the matrix and thermal dissociation into free atoms occur. The resulting absorption signal should (under optimum conditions) be a sharp symmetrical peak proportional to the element concentration in solution.

Alternatively, arsenic, antimony and selenium are determined by the hydride-generation technique (HGAAS). Arsenic and antimony are first pre-reduced in the aqua regia extract by a mixture of ascorbic acid and potassium iodide. Selenium is pre-reduced by hydrochloric acid at an elevated temperature. After that, the hydride formation occurs by reaction with a sodium borohydride solution. The hydrides are carried from the solution by an argon stream into a heated quartz cell and decomposed at 900 °C and then the atom concentration for arsenic and antimony is measured by atomic absorption spectrometry. There are several commercial systems available where the reaction of hydride formation occurs continuously (continuous flow or

flow injection systems) or stepwise (batch systems). All these techniques can be used, but adaptation of the working steps and reagent concentrations according to the advice of the manufacturer may be necessary. Refer to the manufacturer's recommendation for wavelengths and spectral band widths or see Table 1.

Flement	Wavelength	Spectral band width
Liement	nm	nm
Arsenic	193,7	0,7
Antimony	217,6	1,0
Selenium	196,0	1,0

Table 1 — Measurement conditions for arsenic, antimony and selenium

4 Reagents

All reagents shall be of recognised analytical grade. Use demineralised water or water distilled from an allglass apparatus conforming to Grade 2 of ISO 3696. The water used for blank determinations and for preparing reagents and standard solutions shall have element concentrations that are negligible compared with the lowest concentration to be determined in the sample solutions.

4.1 Hydrochloric acid, w(HCI) = 37 %, $\rho(HCI) \approx 1.2 \text{ g/ml}$.

The same batch of hydrochloric acid shall be used throughout the procedure.

4.2 Hydrochloric acid, diluted (1 + 9).

Pour 500 ml of water into a 1 000 ml volumetric flask. Add 100 ml of hydrochloric acid (4.1) with caution, mix and fill to the mark with water.

4.3 Nitric acid, $w(HNO_3) = 65 \%$, $\rho(HNO_3)_{124} = 445 g/m_{244} = 520280 - 2007$

The same batch of nitric acid shall be used throughout the procedure.

4.4 Nitric acid, $c(HNO_3) = 0.5 \text{ mol/l}.$

Pour 500 ml of water into a 1 000 ml volumetric flask. Add 22 ml of nitric acid (4.3) with caution, mix and fill to the mark with water.

4.5 Aqua regia solution, diluted (1 + 9).

Pour 500 ml of water into a 1 000 ml volumetric flask. Add 75 ml of hydrochloric acid (4.1) and 25 ml of nitric acid (4.3) with caution, mix and fill to the mark with water.

4.6 Palladium/magnesium nitrate modifier solution.

Two sources of modifier solutions can be used:

- commercially available modifier solutions;
- modifier element solutions prepared in the laboratory from pure palladium (e.g. powder) or from stochiometrically defined and dried salts.

Dissolve 0,30 g of palladium nitrate $[Pd(NO_3)_2]$ and 0,36 g of magnesium nitrate $[Mg(NO_3)_2 \cdot 6 H_2O]$ in a 100 ml volumetric flask, fill to the mark with 0,5 mol/l nitric acid (4.4) and mix.

Alternatively, prepare the palladium/magnesium nitrate modifier solution as follows: Dissolve, in a 250 ml beaker, 0,14 g of palladium powder in 3,5 ml of nitric acid (4.3) and add 10 µl of hydrochloric acid (4.1). Evaporate the solution to near dryness on a water bath or hot plate, then add 0,36 g of magnesium nitrate $[Mg(NO_3)_2 \cdot 6 H_2O]$. Dissolve this solid residue in 50 ml of nitric acid (4.4), transfer the solution into a 100 ml volumetric flask, fill to the mark with nitric acid (4.4) and mix. 10 µl of this solution are equal to 14 µg of Pd and 36 µg of Mg(NO_3)_2.

NOTE The recommendations of instrument manufacturers may propose different modifier-solution concentrations. Also, recommendations of appropriate modifier-to-analyte ratios may be given depending on the furnace design.

4.7 Pre-reduction solutions, ascorbic acid and potassium iodide.

Dissolve 10 g of potassium iodide (KI) and 10 g of ascorbic acid ($C_6H_8O_6$) in 200 ml of water. This solution shall be prepared on the day of use.

4.8 Sodium borohydride solution.

The composition of this solution depends on the hydride-generation system used. Generally, the concentration of sodium borohydride (NaBH₄) varies from 0,2 g/l to 10 g/l, and the concentration of sodium hydroxide from 0,5 g/l to 5 g/l. Refer to the manufacturer's instruction for further information.

Dissolve an appropriate quantity of sodium hydroxide in water, add a quantity of sodium borohydride, wait until complete dissolution, filter the solution through a membrane filter of $0,45 \,\mu\text{m}$ porosity into a 1 000 ml volumetric flask, fill to the mark with water and mix. This solution should be prepared freshly on the day of use.

4.9 Preparation of stock and standard solutions of individual elements.

Two sources of stock solutions are available: ards.iteh.ai)

- commercially available stock solutions; <u>ISO 20280:2007</u>
- stock solutions prepared in the laboratory from pure elements or stochiometrically defined dried salts or oxides.

NOTE Commercially available stock solutions have the advantage that they remove the need to handle toxic metals. However, special care needs to be taken that these solutions are supplied with a certified composition from a reputable source and are checked on a regular basis.

WARNING — Arsenic, antimony and selenium are highly toxic. Take appropriate measures to avoid ingestion. Care should be taken in disposal of such solutions.

4.10 Arsenic, stock solution corresponding to 1 000 mg/l of arsenic.

4.11 Arsenic, standard solution corresponding to 100 mg/l of arsenic.

Pipette 10,0 ml of the arsenic stock solution (4.10) into a 100 ml volumetric flask, add 1 ml of nitric acid (4.3), fill to the mark with water and mix well.

4.12 Arsenic, standard solution corresponding to 1 mg/l of arsenic.

Pipette 1,00 ml of the 100 mg/l arsenic standard solution (4.11) into a 100 ml volumetric flask, add 2 ml of nitric acid (4.3), fill to the mark with water and mix well. Prepare this solution at least weekly.

4.13 Antimony, stock solution corresponding to 1 000 mg/l of antimony.

4.14 Antimony, standard solution corresponding to 100 mg/l of antimony.

Pipette 10,0 ml of the antimony stock solution (4.13) into a 100 ml volumetric flask, add 5 ml of nitric acid (4.3) and 10 ml of hydrochloric acid (4.1), fill to the mark with water and mix well.

4.15 Antimony, standard solution corresponding to 1 mg/l of antimony.

Pipette 1,00 ml of the 100 mg/l antimony standard solution (4.14) into a 100 ml volumetric flask, add 2 ml of nitric acid (4.3) and 2 ml hydrochloric acid (4.1), fill to the mark with water and mix well. Prepare this solution at least weekly.

4.16 Selenium, stock solution corresponding to 1 000 mg/l of selenium.

4.17 Selenium, standard solution corresponding to 100 mg/l of selenium.

Pipette 10,0 ml of the selenium stock solution (4.16) into a 100 ml volumetric flask, add 1 ml of nitric acid (4.3), fill to the mark with water and mix well.

4.18 Selenium, standard solution corresponding to 1 mg/l of selenium.

Pipette 1,00 ml of the 100 mg/l selenium standard solution (4.17) into a 100 ml volumetric flask, add 2 ml of nitric acid (4.3), fill to the mark with water and mix well. Prepare this solution at least weekly.

4.19 1,10 Phenanthrolin-monohydrate solution.

Dissolve 10 g of 1,10 phenanthrolin-monohydrate ($C_{12}H_8N_2\cdot H_20$) in 100 ml of water. The solution shall be prepared on the day of use.

5 Apparatus

iTeh STANDARD PREVIEW (standards.iteh.ai)

5.1 General

Usual laboratory apparatus should be used.

ISO 20280:2007

Quartz vessels should be the preferred material for the whole procedure (especially if lower calibration ranges $(0,1 \mu g/l)$ to $1 \mu g/l)$ are to be used for measurement) $c_{0}c_{2}c_{4}r_{1}s_{0}-20280-2007$

NOTE Cleaning of glassware: All glassware used must be cleaned carefully before use, e.g. by immersion in $\varphi(HNO_3) \approx 50 \text{ ml/l}$ aqueous nitric acid solution for a minimum of 6 h, followed by rinsing with water before use. It can be helpful to keep a separate set of glassware exclusively for these determinations.

5.2 Water bath.

5.3 Atomic absorption spectrometer, equipped with a hollow cathode of the element or, preferably, a high-energy discharge lamp (which gives a greater and more stable light intensity) operated at a current recommended by the lamp and instrument manufacturer, an automatic background-correction device, preferably Zeeman correction for ETAAS-measurement, and a computerised readout.

5.4 Electrothermal atomiser, equipped with an automated sample introduction system (sample dispenser), which should be adaptable to the atomic absorption spectrometer (5.3).

5.5 Hydride-generation system, commercially available, where the reaction occurs continuously (continuous flow or flow injection systems) or stepwise (batch systems). It should be adaptable to the atomic absorption spectrometer (5.3). Heat the quartz cell at least to 900 °C for complete dissociation of metal hydrides.

WARNING — It is essential that the manufacturer's safety recommendations are strictly observed. Metal hydrides are highly toxic. Care must be taken not to inhale these gases.

NOTE When using an automated hydride-generation system, where the reaction occurs continuously (continuous flow or flow injection systems), the concentration of sodium borohydride solution, reaction time and the gas-liquid separator configuration must be optimised due to the slow reaction kinetics of this reducing system. Severe matrix interferences are possible.

6 Procedure

6.1 Test portion

Grind a representative portion of air-dried sample (prepared in accordance with ISO 11464) until it passes entirely through the 150 μ m aperture sieve to give a sub-sample of approximately 20 g. Use a separate portion of that sub-sample to determine the dry matter in accordance with ISO 11465.

6.2 Aqua regia extraction for arsenic, antimony and selenium

6.2.1 Test portion solution

Extract the soil with aqua regia in accordance with ISO 11466. If the element mass fractions of soil samples are low, carry out another dilution to match the calibration range. For the ETAAS technique, a dilution (1 + 9) is described as an example.

6.2.2 Test portion solution diluted (1 + 9)

Dilute 10,00 ml of test portion solution (6.2.1) in a 100 ml volumetric flask with water, fill to the mark and mix.

6.3 Blank test

6.3.1 Blank test solution

iTeh STANDARD PREVIEW

Carry out a blank test at the same time as the determination and following the same extraction procedure with aqua regia according to ISO 11466, using the same quantities of all the reagents for the determination but omitting the test portion.

ISO 20280:2007

6.3.2 Blank test solution: diluted (1atc9) alog/standards/sist/a16246fc-25a7-490f-a134-

b424e5c0c254/iso-20280-2007

Dilute 10,00 ml of blank test solution (6.3.1) in a 100 ml volumetric flask with water, fill to the mark and mix.

7 Method A — Electrothermal atomic absorption spectrometry: Preparation of calibration solutions and measurement

7.1 General

The standard solutions shall be prepared before each batch of determinations.

7.2 Calibration solutions for arsenic

Pipette 0 ml, 2,00 ml, 4,00 ml and 6,00 ml of the arsenic standard solution of 1 mg/l (4.12) into a series of 100 ml volumetric flasks, dilute to the mark with aqua regia solution (1 + 9) (4.5) and mix well. These solutions correspond to arsenic concentrations of 0 µg/l, 20 µg/l, 40 µg/l and 60 µg/l, respectively.

7.3 Calibration solutions for antimony

Pipette 0 ml, 5,00 ml, 10,00 ml and 15,00 ml of the antimony 1 mg/l standard solution (4.15) into a series of 100 ml volumetric flasks, dilute to the mark with aqua regia solution (1 + 9) (4.5) and mix well. These solutions correspond to antimony concentrations of 0 µg/l, 50 µg/l, 100 µg/l and 150 µg/l, respectively.

7.4 Calibration solutions for selenium

Pipette 0 ml, 2,00 ml, 4,00 ml and 6,00 ml of the selenium 1 mg/l standard solution (4.18) into a series of 100 ml volumetric flasks, dilute to the mark with aqua regia solution (1 + 9) (4.5) and mix well. These solutions correspond to selenium concentrations of 0 µg/l, 20 µg/l, 40 µg/l and 60 µg/l, respectively.

7.5 Calibration and determination with ETAAS measurement

7.5.1 General

Set up the instrument and align the electrothermal atomiser according to the manufacturer's instructions. Use of background correction is essential.

Determine the optimum electrothermal atomiser parameters for the particular type of atomiser and sample size as recommended by the instrument manufacturer or normal laboratory practice (Table 2). The temperatures given are only approximate values. The temperature programme should be optimised with the instrument used. Refer to the manufacturer's recommendation or see Table 2.

	As	Sb	Se	
Wavelength in nm	193,7	217,6	196,0	
Graphite furnace	Pyrolitic coated tube with platform			
Background correction	Zeeman	Zeeman	Zeeman	
Matrix modifier	standard Palladium/magnesium nitrate (4.6)			
Drying temperature in °C	90/130	90/130	90/130	
Pretreatment temperature in °Chttps://standards.	150 20280:2007 1, 150 teh.ai/catalog/standards/sist/a16	246fc-25a7-4901-a134-	1 200	
Atomising temperature in °C	b424e5c 2c2.00 ïso-20280-2	.007 1 900	2 400	
Clean-up temperature in °C	2 500	2 500	2 500	

Table 2 — Recommended ETAAS conditions

NOTE For ETAAS, the application of deuterium background correction systems is limited. The presence of a structured spectral background can occur. The application of a Zeeman background correction is preferred to correct this interference. To increase the analyte-to-background signal ratio, the use of a graphite tube with a pyrolitic platform, together with palladium and magnesium nitrate as matrix modifiers, is recommended.

7.5.2 Measurement of calibration and test solutions, ETAAS

Ensure that the blank test solutions (6.3.2), the calibration solutions (7.2, 7.3 or 7.4) and the test portion solutions (6.2.2) have approximately the same temperature by storing them for a sufficient time in the same room. Zero the instrument and set the baseline. Check the zero stability and lack of spectral interferences within the atomisation system by running the pre-set heating programme for blank firing of the graphite atomiser. Repeat to ensure baseline stability.

Using an auto sampler (see 5.4), inject a fixed volume of modifier solution (4.6) and measurement solution and atomise the calibration blank (7.2, 7.3 or 7.4), calibration solution (7.2, 7.3 or 7.4), blank test solution (6.3.2) and test portion solutions (6.2.2) in order of increasing instrument response. If the peak height or peak area of the test portion exceeds the value of the highest calibration solution, a diluted solution of the test portion solution solution solution solution solution solution solution solution solution for the test portion solution solution solution solution solution solution for the test portion solution solution solution solution solution for the test portion solution solution

Atomise each solution at least twice and, if the repeatability is acceptable, average the readings. Check the instrument for memory effects, especially at high analyte levels, by running a blank firing programme between determinations. Reset the baseline to zero if necessary.

For each type of soil, it is mandatory to determine the corresponding extract solution, at least once, by means of the standard addition method. If the analytical results according to the standard addition method and the calibration curve method are equal, the calibration curve method can be applied. If the analytical results are different, matrix interferences are likely and the standard addition method shall be used for each corresponding soil extract solution.

Alternatively, it is possible to use the matrix check or quality control spike option.

The calibration shall be established from standard solutions for arsenic, antimony and selenium which give peak absorbances lower than the maximum absorbance specified for that wavelength and element.

8 Method B — Hydride-generation atomic absorption spectrometry: Preparation of calibration solutions and measurement

8.1 **Pre-reduction and calibration for the determination of arsenic**

Pipette 0 ml, 2,00 ml, 5,00 ml, 7,50 ml, 12,5 ml and 20,0 ml of arsenic standard solution of 1 mg/l (4.12) into a series of 50 ml volumetric flasks and fill up to the mark with hydrochloric acid (4.2). Add 1 ml of these solutions, 2,5 ml of pre-reduction solution (4.7) and 2,5 ml of hydrochloric acid (4.1) to a series of 25 ml volumetric flasks and mix well. Allow to stand at room temperature for 2 h (pre-reduction does not occur immediately) and fill up with water prior to analysis. These solutions correspond to concentrations of 0 μ g/l, 1,6 μ g/l, 4,0 μ g/l, 6,0 μ g/l, 10 μ g/l and 16 μ g/l of arsenic.

Pipette 1,00 ml of blank test solution (6.3.1) and test portion solution (6.2.1) into a series of 25 ml volumetric flasks and add 2,5 ml of hydrochloric acid (4.1) and 2,5 ml of pre-reduction solution (4.7). Mix well, allow to stand at room temperature for 1 h and fill up to the mark with water. Allow to stand at room temperature for another hour prior to analysis. The solutions are diluted 25 times by this pre-reduction step.

<u>SO 20280:2007</u>

8.2 Pre-reduction and calibration for the determination of antimony

24e5c0c254/iso-20280-2007

Pipette 0 ml, 2,50 ml, 5,00 ml, 10,0 ml and 20,0 ml of antimony standard solution of 1 mg/l (4.15) into a series of 50 ml volumetric flasks and fill up to the mark with hydrochloric acid (4.2). Add 2,5 ml of these solutions, 2,5 ml of pre-reduction solution (4.7) and 2,5 ml of hydrochloric acid (4.1) to a series of 25 ml volumetric flasks and mix well. Allow to stand at room temperature for 2 h (pre-reduction does not occur immediately) and fill up with water prior to analysis. These solutions correspond to concentrations of 0 μ g/l, 5,0 μ g/l, 10 μ g/l, 20 μ g/l and 40 μ g/l of antimony.

Pipette 2,50 ml of blank test solution (6.3.1) and test portion solution (6.2.1) into a series of 25 ml volumetric flasks and add 2,5 ml of hydrochloric acid (4.1) and 2,5 ml of pre-reduction solution (4.7). Mix well, allow to stand at room temperature for 1 h and fill up to the mark with water. Allow to stand at room temperature for another hour prior to analysis. The solutions are diluted 10 times in this pre-reduction step.

8.3 Pre-reduction and calibration for the determination of selenium

Pipette 0 ml, 0,50 ml, 1,00 ml, 2,50 ml and 5,00 ml of selenium standard solution of 1 mg/l (4.18) into a series of 100 ml volumetric flasks and fill up to the mark with hydrochloric acid (4.2). Add 5 ml of these solutions, 2,5 ml of hydrochloric acid (4.1) and 2,5 ml of water to a series of 25 ml volumetric flasks and mix well. Put the volumetric flasks without a stopper into a water bath (5.2) at 70 °C for 1 h (pre-reduction does not occur immediately). Remove the volumetric flasks from the water bath, leave them to cool down to room temperature and fill up to the mark with water prior to analysis. These solutions correspond to concentrations of 0 μ g/l, 1,0 μ g/l, 2,0 μ g/l, 5,0 μ g/l and 10 μ g/l of selenium.

Pipette 5,00 ml of blank test solution (6.3.1) and test portion solution (6.2.1) into a series of 25 ml volumetric flasks and add 2,5 ml of hydrochloric acid (4.1) and 2,5 ml of water. Mix well and put the volumetric flasks without a stopper into a water bath (5.2) at 70 °C for 1 h (pre-reduction does not occur immediately). Remove the volumetric flasks from the water bath, leave them to cool down to room temperature and fill up to the mark with water prior to analysis. The solutions are diluted 5 times in this pre-reduction step.